Observation estimate for kinetic transport equation by diffusion approximation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Observation estimate for kinetic transport equation by diffusion approximation

Résumé

We study the unique continuation property for the neutron transport equation and for a simplified model of the Fokker-Planck equation in a bounded domain with absorbing boundary condition. An observation estimate is derived. It depends on the smallness of the mean free path and the frequency of the velocity average of the initial data. The proof relies on the well known diffusion approximation under convenience scaling and on basic properties of this diffusion. Eventually we propose a direct proof for the observation at one time of parabolic equations. It is based on the analysis of the heat kernel.
Fichier principal
Vignette du fichier
total5.pdf (233.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01317488 , version 1 (18-05-2016)

Identifiants

  • HAL Id : hal-01317488 , version 1

Citer

Claude Bardos, Kim Dang Phung. Observation estimate for kinetic transport equation by diffusion approximation. 2016. ⟨hal-01317488⟩
225 Consultations
77 Téléchargements

Partager

More