Statistical evaluation of manual segmentation of a diffuse low-grade glioma MRI dataset - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Statistical evaluation of manual segmentation of a diffuse low-grade glioma MRI dataset

Résumé

Software-based manual segmentation is critical to the supervision of diffuse low-grade glioma patients and to the optimal treatment’s choice. However, manual segmentationbeing time-consuming, it is difficult to include it in the clinicalroutine. An alternative to circumvent the time cost of manual segmentation could be to share the task among different practitioners, providing it can be reproduced. The goal of our work is to assess diffuse low-grade gliomas’ manual segmentation’s reproducibility on MRI scans, with regard to practitioners, their experience and field of expertise. A panel of 13 experts manually segmented 12 diffuse low-grade glioma clinical MRI datasets using the OSIRIX software. A statistical analysis gave promising results, as the practitioner factor, the medical specialty and the years of experience seem to have no significant impact on the average values of the tumor volume variable.
Fichier principal
Vignette du fichier
article_test.pdf (275.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01316879 , version 1 (17-11-2016)

Identifiants

  • HAL Id : hal-01316879 , version 1

Citer

Meriem Ben Abdallah, Marie Blonski, Sophie Wantz-Mézières, Yann Gaudeau, Luc Taillandier, et al.. Statistical evaluation of manual segmentation of a diffuse low-grade glioma MRI dataset. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’16, Aug 2016, Orlando, Florida, United States. ⟨hal-01316879⟩
351 Consultations
490 Téléchargements

Partager

More