Bijectivity certification of 3D digitized rotations - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Bijectivity certification of 3D digitized rotations

Résumé

Euclidean rotations in $\mathbb{R}^n$ are bijective and isometric maps. Nevertheless, they lose these properties when digitized in $\mathbb{Z}^n$. For $n=2$, the subset of bijective digitized rotations has been described explicitly by Nouvel and R\'emila and more recently by Roussillon and C{\oe}urjolly. In the case of 3D digitized rotations, the same characterization has remained an open problem. In this article, we propose an algorithm for certifying the bijectivity of 3D digitized rational rotations using the arithmetic properties of the Lipschitz quaternions.
Fichier principal
Vignette du fichier
article (1).pdf (2.23 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01315226 , version 1 (12-05-2016)
hal-01315226 , version 2 (30-11-2017)

Identifiants

Citer

Kacper Pluta, Pascal Romon, Yukiko Kenmochi, Nicolas Passat. Bijectivity certification of 3D digitized rotations. 6th International Workshop on Computational Topology in Image Context (CTIC 2016), Jun 2016, Marseille, France. pp.30-41, ⟨10.1007/978-3-319-39441-1_4⟩. ⟨hal-01315226v1⟩
571 Consultations
237 Téléchargements

Altmetric

Partager

More