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Abstract. Euclidean rotations in Rn are bijective and isometric maps. Neverthe-
less, they lose these properties when digitized in Zn. For n = 2, the subset of
bijective digitized rotations has been described explicitly by Nouvel and Rémila
and more recently by Roussillon and Cœurjolly. In the case of 3D digitized rota-
tions, the same characterization has remained an open problem. In this article, we
propose an algorithm for certifying the bijectivity of 3D digitized rational rotations
using the arithmetic properties of the Lipschitz quaternions.

1 Introduction

Rotations defined in Z3 are simple yet crucial operations in many image processing
applications involving 3D data. One way of designing rotations on Z3 is to combine
continuous rotations defined on R3 with a digitization operator that maps the result
back into Z3. However, the digitized rotation, though uniformly close to its continuous
sibling, often no longer satisfies the same properties. In particular, due to the alteration
of distances between points—provoked by the digitization—the bijectivity is lost in
general.

In this context, it is useful to understand which 3D digitized rotations are indeed
bijective. “Simple” 3D digitized rotations, in particular those around one of the coordinate
axes, possess the same properties as 2D digitized rotations. Therefore, an obvious
subset of 3D bijective digitized rotations consists of the 2D bijective digitized rotations
embedded in Z3. Nevertheless, the question of determining whether a non-simple 3D
digitized rotation is bijective, remained open.

To our knowledge, few efforts were devoted to understand topological alterations of
Z3 induced by digitized rotations. The contributions known to us were geared toward
understanding these alterations in Z2: Andres and Jacob provided some necessary condi-
tions under which 2D digitized rotations are bijective [5]; Andres proposed quasi-shear
rotations which are bijective but possibly generate errors, particularly for angles around
π/2 [1]; Nouvel and Rémila studied the discrete structure induced by digitized rotations
that are not bijective but generate no error [12, 14]; moreover, they characterized the set
of 2D bijective digitized rotations [13]. More recently, Roussillon and Cœurjolly used
arithmetic properties of the Gaussian integers to give a different proof of the conditions



for bijectivity of 2D digitized rotations [17]. On the other hand, more general 2D dig-
itized rigid motions—rotations, translations and their compositions—were studied by
Ngo et al. [9], with their impact on the topological properties of finite digital grids [10].
Moreover, Ngo et al. established some sufficient conditions for topology preservation
under 2D digitized rigid motions [11]. Lately we provided a characterization of the set
of 2D bijective digitized rigid motions [16].

In this article, our contribution is as follows. We consider an approach similar to
that proposed by Roussillon and Cœurjolly to prove the conditions for bijectivity of
2D digitized rotations using arithmetic properties of Gaussian integers [17]—which are
complex numbers whose real and imaginary parts are integers [4]. Indeed, the product of
two complex numbers has a geometrical interpretation; more precisely, it acts as a rotation
when the norm of the multiplier is one. In our work, we partially extend the results of
Roussillon and Cœurjolly to 3D digitized rotations, employing Lipschitz quaternions,
which play a similar role to Gaussian integers. However, due to the non-commutative
nature of quaternions and their two-to-one relation with 3D rotations, the former approach
has not succeeded yet to fully characterize the bijective digitized rotations. Nevertheless,
we propose an algorithm which certifies whether a given digitized rotation, defined by a
Lipschitz quaternion, is bijective. As a consequence, we cover all the rational rotations,
i.e., those whose corresponding matrix representation contains only rational elements—
since they correspond to rotations given by Lipschitz quaternions. From the point of
view of the applications, excluding a rotation whose matrix has irrational elements is
a minor issue, since computers mainly work with rational numbers. Moreover, using
rational numbers ensures the exactness of the proposed certification algorithm.

This article is organized as follows. In Section 2, we recall the basic definitions of 3D
rotations and Lipschitz quaternions. Section 3 provides our framework for studying the
bijectivity of digitized rotations in Z3. In Section 4, we provide an algorithm certifying
whether a given rational rotation is bijective or not when digitized in Z3. Finally, in
Section 5, we conclude this article and provide some perspectives.

2 Digitized rotations in three dimensions

A rotation in R3 is a bijective isometric map defined as∣∣∣∣∣∣U : R3 → R3

x 7→ Rx (1)

where R is a 3D rotation matrix. Note that the matrix R can be obtained from a rotation
angle and axis by Rodrigues’ rotation formula [6, 8, 19] or from a quaternion [6, 19].

2.1 Spatial rotations and quaternions

The proposed framework for bijectivity certification uses the formalism of quaternions.
These are the elements of the set H = {a + bi + c j + dk | a, b, c, d ∈ R} with the following
properties:

i2 = −1, j2 = −1, k2 = −1,

jk = −k j = i, ki = −ik = j, i j = − ji = k .



Similarly to the set of complex numbers, H possesses a division ring structure, albeit a
non-commutative one. More precisely, for p, q, r ∈ H:

– the conjugate of q = a + bi + c j + dk is defined as q̄ = a − bi − c j − dk;
– the product of two quaternions, defined as

qp = (a1 + b1i + c1 j + d1k)(a2 + b2i + c2 j + d2k) =

a1a2 − b1b2 − c1c2 − d1d2 + (a1b2 + b1a2 + c1d2 − d1c2)i
+(a1c2 − b1d2 + c1a2 + d1b2) j + (a1d2 + b1c2 − c1b2 + d1a2)k,

is not commutative, i.e. qp , pq, in general, although real numbers, i.e., quaternions
such that q = q̄ do commute with all others;

– the norm of q is defined as |q| =
√

qq̄ =
√

q̄q =
√

a2 + b2 + c2 + d2;
– the inverse of q is defined as q−1 =

q̄
|q|2 , so that qq−1 = q−1q = 1.

Any point in R3 is represented by a pure imaginary quaternion: x = (x1, x2, x3) '
x1i + x2 j + x3k. Then, any rotationU can be written as x 7→ qxq−1, where x ∈ R3 [6,19].
The quaternion q is uniquely determined up to multiplication by a nonzero real number,
and, if |q| = 1, up to a sign change: qxq−1 = (−q)x(−q)−1; hence the correspondence
between unit quaternions and rotation matrices is two-to-one. Note that for any unit
norm quaternion q = a + bi + c j + dk, a rotation angle θ and an axis of rotation ωωω are
given as θ = 2 cos−1 a, andωωω =

(b,c,d)t

|(b,c,d)t |
, respectively. We refer the reader unfamiliar with

quaternions to [2, 6, 19].

2.2 Digitized rotations

According to Equation (1), we generally haveU(Z3) * Z3. As a consequence, to define
digitized rotations as maps from Z3 to Z3, we usually consider Z3 as a subset of R3,
applyU, and then combine the real results with a digitization operator∣∣∣∣∣∣D : R3 → Z3

(x, y, z) 7→
(⌊

x + 1
2

⌋
,
⌊
y + 1

2

⌋
,
⌊
z + 1

2

⌋)
where bsc denotes the largest integer not greater than s. The digitized rotation is thus
defined by U = D ◦ U|Z3 . Due to the behavior of D that maps R3 onto Z3, digitized
rotations are, most of the time, non-bijective. This leads us to define the notion of point
status with respect to a given digitized rotation.

Definition 1. Let y ∈ Z3 be an integer point. The set of preimages of y with respect to
U is defined as MU(y) = {x ∈ Z3 | U(x) = y}, and y is referred to as a s-point, where
s = |MU(y)| is called the status of y.

Remark 1. In Z3, |MU(y)| ∈ {0, 1, 2, 3, 4} and one can prove that only points p,q ∈ Z3

such that |p − q| <
√

3 can be preimages of a 2-point; points p,q, r ∈ Z3 forming an
isosceles triangle of side lengths 1, 1 and

√
2 can be preimages of a 3-point; points

p,q, r, s ∈ Z3 forming a square of side length 1 can be preimages of a 4-point.

The non-injective and non-surjective behaviors of a digitized rotation result in the
existence of s-points for s , 1. Figure 1 illustrates a simple 3D rotation which provokes
0- and 2- point statuses.



Fig. 1. Examples of three different point statuses: digitization cells corresponding to 0-, 1- and
2-points are in green, black and red, respectively. White dots indicate the positions of images of
the points of the initial set Z3 byU, embedded in R3, subdivided into digitization cells around the
points of the final set Z3, represented by gray triangles. Note that, for readability purpose,U is a
simple 3D digitized rotation such that θ = π

9 ,ωωω = (0, 0, 1)t. Therefore, as for 2D digitized rotations,
only 0-, 1- and 2- point statuses are possible. Note that only one 2D slice of 3D space is presented.

3 Bijectivity certification

3.1 Set of remainders

Let us compare the rotated digital gridU(Z3) = qZ3q−1 with the grid Z3. The digitized
rotation U = D◦U is bijective if and only if each digitization cell of Z3 contains one and
only one rotated point of qZ3q−1; in other words, ∀y ∈ Z3, |MU(y)| = 1. Let us denote
by C(y) the digitization cell, i.e. the unit cube, centered at the point y = (y1, y2, y3) ∈ Z3:

C(y) =

[
y1 −

1
2
, y1 +

1
2

)
×

[
y2 −

1
2
, y2 +

1
2

)
×

[
y3 −

1
2
, y3 +

1
2

)
.

Instead of studying the whole source and target spaces, we study the set of remainders
defined by the map ∣∣∣∣∣∣S q : Z3 × Z3 → R3

(x, y) 7→ qxq−1 − y.

Then, the bijectivity of U can be expressed as

∀y ∈ Z3 ∃!x ∈ Z3, S q(x, y) ∈ C(0),

which is equivalent to the “double” surjectivity relation, used by Roussillon and Cœur-
jolly [17]: {

∀y ∈ Z3 ∃x ∈ Z3, S q(x, y) ∈ C(0)
∀x ∈ Z3 ∃y ∈ Z3, S q(x, y) ∈ qC(0)q−1 (2)



provided that both sets S q(Z3,Z3) ∩ C(0) and S q(Z3,Z3) ∩ qC(0)q−1 coincide; in other
words, S q(Z3,Z3) ∩ ((C(0) ∪ qC(0)q−1) \ (C(0) ∩ qC(0)q−1)) = ∅. Hereafter, we shall
rely on Formula (2), and in the study of the bijectivity of digitized rotation U, we will
focus on the values of S q. More precisely, we will study the group G spanned by values
of S q:

G = Zq
(

1
0
0

)
q−1 + Zq

(
0
1
0

)
q−1 + Zq

(
0
0
1

)
q−1 + Z

(
1
0
0

)
+ Z

(
0
1
0

)
+ Z

(
0
0
1

)
.

3.2 Dense subgroups and non-injectivity

The key to understanding the conditions that ensure the bijectivity of U is the structure
of G. For this reason, we start by looking at the image G of S q, and discuss its density.

Proposition 2. If one or more generators of G have an irrational term, then G ∩ V is
dense for some nontrivial subspace V. We say that G has a dense factor.

On the contrary, we have the following result.

Proposition 3. If all generators of G have only rational terms, then there exist vectors
σσσ,φφφ,ψψψ ∈ G which are the minimal generators of G.

Proof. The generators of G are given by the rational matrix B = [R | I3] where I3 stands
for the 3 × 3 identity matrix. As B is a rational, full row rank matrix, it can be brought
to its Hermite normal form H = [T | 03,3], where T is a non-singular, lower triangular
non-negative matrix and 03,3 stands for 3 × 3 zero matrix, such that each row of T has
a unique maximum entry, which is located on the main diagonal4 [18]. Note that the
problem of computing the Hermite normal form H of the rational matrix B reduces to
that of computing the Hermite normal form of an integer matrix: let s stand for the least
common multiple of all the denominators of B which is given by s = |q|2; compute the
Hermite normal form H′ for the integer matrix sB; finally, the Hermite normal form H of
B is obtained by s−1H′. The columns of H are the minimal generators of G. Notice that
the rank of B is equal to 3. Therefore, H gives a base (σσσ,φφφ,ψψψ), so that G = Zσσσ+Zφφφ+Zψψψ.
As H′ gives an integer base, sG is an integer lattice. ut

Lemma 4. Whenever G is dense, the corresponding 3D digitized rotation is not bijective.

Proof. SinceG is dense, there exists µ = S q(x, y) ∈ G∩C(0) such that µ+σ = S q(x+i, y)
also lies in C(0). Then x and x + i are both preimages of y by U, which is therefore not
bijective. ut

When G is dense (see Figure 2(a)), the reasoning of Nouvel and Rémila, originally
used to discard 2D digitized irrational rotations as being bijective [13], shows that a
corresponding 3D digitized rotation cannot be bijective as well. What differs from the
2D case is the possible existence of non-dense G with a dense factor (see Figure 2(b)).
In this context, we state the following conjecture.

4 Note that the definition of Hermite normal form varies in the literature.



(a) (b)

σσσ φφφ

ψψψ

(c)

Fig. 2. Illustration of a part of G when: (a) G is dense; (b) G is not dense but has a dense factor
– the set of points at each plane is dense while the planes are spaced by a rational distance ; (c)
G is a lattice. In the case of (a) and (b), only some random points are presented, for the sake of
visibility. In (c), vectors σσσ,φφφ,ψψψ are marked in red, blue and green, respectively.

Conjecture 1. Whenever G has a dense factor, the corresponding digitized rotation is
not bijective.

Henceforth, we will assume that G is generated by rational vectors, and forms
therefore a lattice (see Figure 2(c)). In other words, corresponding rotations are consid-
ered as rational. The question now remains of comparing the (finitely many) points in
S q(Z3,Z3) ∩ C(0) and S q(Z3,Z3) ∩ qC(0)q−1.

3.3 Lipschitz quaternions and bijectivity

To represent 2D rational rotations, Roussillon and Cœurjolly used Gaussian integers
[17]. In R3, rational rotations are characterized as follows [3].

Proposition 5. There is a two-to-one correspondence between the set of Lipschitz quater-
nions L = {a + bi + c j + dk | a, b, c, d ∈ Z} such that the greatest common divisor of
a, b, c, d is 1, and the set of rational rotations.



Working in the framework of rational rotations allows us to turn to integers: |q|2G
is an integer lattice. As integer lattices are easier to work with from the computational
point of view, we do scale G by |q|2 in order to develop a certification algorithm.

Similarly to the former discussion, after scaling G by |q|2, we consider the finite
set of remainders, obtained by comparing the lattice qZ3q̄ with the lattice |q|2Z3, and
applying the scaled version of the map S q defined as∣∣∣∣∣∣ Š q : Z3 × Z3 → Z3

(x, y) 7→ qxq̄ − qq̄y. (3)

Indeed, Formula (2) is rewritten as{
∀y ∈ Z3 ∃x ∈ Z3, Š q(x, y) ∈ |q|2C(0)
∀x ∈ Z3 ∃y ∈ Z3, Š q(x, y) ∈ qC(0)q̄.

(4)

Note that the right hand sides of Formulae (3) and (4) are left multiples of q. As a
consequence, we are allowed to divide them by q on the left, while keeping integer-valued
functions. Let us define ∣∣∣∣∣∣S ′q : Z3 × Z3 → Z4

(x, y) 7→ xq̄ − q̄y.

Then, the bijectivity of U is ensured when{
∀y ∈ Z3 ∃x ∈ Z3, S ′q(x, y) ∈ q̄C(0)
∀x ∈ Z3 ∃y ∈ Z3, S ′q(x, y) ∈ C(0)q̄, (5)

provided that both sets S ′q(Z3,Z3) ∩ q̄C(0) and S ′q(Z3,Z3) ∩ C(0)q̄ coincide.

4 An algorithm for bijectivity certification

In this section we present an algorithm which indicates whether a digitized rational
rotation given by a Lipschitz quaternion is bijective or not. The strategy consists of
checking whether there exists w ∈ ((q̄C(0) ∪ C(0)q̄) \ (q̄C(0) ∩ C(0)q̄)) ∩ Z4 such
that w = S ′q(x, y). If this is the case, then the rotation given by q is not bijective, and
conversely.

Because q is a Lipschitz quaternion, the values of S ′q span a sublattice Ǧ ⊂ Z4.
Therefore, given a Lipschitz quaternion q = a + bi + c j + dk, solving S ′q(x, y) = w with
x, y ∈ Z3 for w ∈ Ǧ leads to solving the following linear Diophantine system:

Az = w (6)

where zt = (x, y) ∈ Z6 and

A =



b c d −b −c −d

a −d c −a −d c

d a −b d −a −b

−c b a −c b −a


.



The minimal basis (σ̌σσ, φ̌φφ, ψ̌ψψ) of Ǧ can be obtained from the columns of the Hermite
normal form of the matrix A. Since the rank of A is 3, we have Ǧ = Zσ̌σσ + Zφ̌φφ + Zψ̌ψψ.

Therefore, the problem amounts to: (i) finding the minimal basis (σ̌σσ, φ̌φφ, ψ̌ψψ) of the
group Ǧ by reducing the matrix A to its Hermite normal form; (ii) checking whether
there exists a linear combination of these basis vectors w = uσ̌σσ+ vφ̌φφ+ wψ̌ψψ, for u, v,w ∈ Z
such that w ∈ (q̄C(0) ∪ C(0)q̄) \ (q̄C(0) ∩ C(0)q̄).

To find points of Ǧ that violate Formula (5), we consider points w ∈ Z4 ∩ q̄C(0)
(or w ∈ Z4 ∩ C(0)q̄) such that w < C(0)q̄ (or w < q̄C(0)). Then, we verify whether w
belongs to Ǧ. The membership verification can be done in two steps. Step 1: we check if
Equation (6) has solutions, while verifying if the following holds:

aw1 − bw2 − cw3 − dw4 = 0,

where w = (w1,w2,w3,w4) and q = a + bi + c j + dk. Step 2: we check if Equation (6)
has integer solutions by solving it. This can be done by reducing the matrix [A | w] to
the Hermite normal form. Note that before iterating over points w ∈ Z4 ∩ q̄C(0) (or
w ∈ Z4∩C(0)q̄), we can first reduce the matrix A to its Hermite normal form Ȟ and then
reduce the augmented matrix [Ȟ | w], which is computationally less costly, as explained
in the following discussion.

All the steps are summarized in Algorithm 1. Figure 3 presents sets of points
qw ∈ qC(0)q̄∪ |q|2C(0) for some Lipschitz quaternions, which induce bijective digitized
rational rotations, while Figure 4 presents non-bijective cases. Finally, Table 1 lists
some examples of Lipschitz quaternions that generate non-simple 3D bijective digitized
rotations5.

Algorithm 1: Checks if a given Lipschitz quaternion generates a 3D bijective
digitized rotation.

Data: a Lipschitz quaternion q = a + bi + c j + dk s.t. gcd(a, b, c, d) = 1.
Result: True if the digitized rotation given by q is bijective and false otherwise.

1 Ȟ← HermiteNormalForm(A)
2 foreach w = (w1,w2,w3,w4) ∈ Z4 ∩ q̄C(0) do
3 if aw1 − bw2 − cw3 − dw4 = 0 and {p | Ȟp = w,p ∈ Z3} , ∅ then
4 if w < C(0)q̄ then
5 return false

6 return true

The time complexity of Algorithm 1 is given as follows.
Step 1: reduction of the matrix A to the Hermite normal form can be done in a

polynomial time [18]. For instance, one can apply the algorithm proposed by Micciancio
and Warinschi [7] or its more recent, optimized version proposed by Pernet and Stein
[15], whose running time complexity for full row rank matrices—with some slight

5 A complete list of Lipschitz quaternions in the range [−10, 10]4, inducing bijective 3D digitized
rotations can be downloaded from: http://dx.doi.org/10.5281/zenodo.50674



Lipschitz quaternion Angle axis representation
3 + 2i + j θ ≈ 73.4◦,ωωω =

(
2
√

5
, 1
√

5
, 0

)
5 + 4i + j θ ≈ 79.02◦,ωωω =

(
4
√

17
, 1
√

17
, 0

)
2 + i + j + k θ ≈ 81.79◦,ωωω =

(
1
√

3
, 1
√

3
, 1
√

3

)
4 + j + 3k θ ≈ 76.66◦,ωωω =

(
0, 1
√

10
, 3
√

10

)
3 + i + j + k θ ≈ 60◦,ωωω =

(
1
√

3
, 1
√

3
, 1
√

3

)
4 + i + j + k θ ≈ 46.83◦,ωωω =

(
1
√

3
, 1
√

3
, 1
√

3

)
5 + i + j + k θ ≈ 38.21◦,ωωω =

(
1
√

3
, 1
√

3
, 1
√

3

)
3 + 2i + 2 j + 3k θ ≈ 107.9◦,ωωω =

(
2
√

17
, 2
√

17
, 3
√

17

)
−5 + 3i + 5 j + 5k θ ≈ 246.1◦,ωωω =

(
3
√

59
, 5
√

59
, 5
√

59

)
5 − 4i + −5 j + 5k θ ≈ 116.8◦,ωωω =

(
−2

√
2
33 ,−

5
√

66
, 5
√

66

)
10 − 10i + 10 j + 9k θ ≈ 118.4◦,ωωω =

(
− 10
√

281
, 10
√

281
, 9
√

281

)
−10 + 9i − 9 j − 10k θ ≈ 243.4◦,ωωω =

(
9
√

262
,− 9

√
262
,−5

√
2

131

)
2 + 2i + j + 2k θ ≈ 112.6◦,ωωω =

(
2
3 ,

1
3 ,

2
3

)
−2 − 2i − j + k θ ≈ 258.5◦,ωωω =

(
−

√
2
3 ,−

1
√

6
, 1
√

6

)
Table 1. Examples of Lipschitz quaternions which generate 3D bijective digitized rotations.

modifications it can handle non-full row rank matrices—is O(mn4 log2 N(A)), where n
is the number of rows, m the number of columns and N(A) stands for a bound on the
entries of the matrix A [7]. Here n = 4 and m = 6. Thus, the time complexity of Step 1
is O(log2 N(A)).

Step 2: the number of points in Z4 ∩ q̄C(0) (resp. Z4 ∩C(0)q̄) is bounded by |q|3. For
each point, the time needed to reduce the matrix [Ȟ | w] to the Hermite normal form
is O(n4 log2 N([Ȟ | w])), where n = 4 and N([Ȟ | w]) is a bound on the entries of the
matrix [Ȟ | w] [7]. Therefore, the time complexity of Step 2 is O(|q|3 log2 N([Ȟ | w])).
Note that determining whether w < C(0)q̄ (or w < q̄C(0)) can be done in a constant time
while checking a set of inequalities.

Finally, we can conclude that the time complexity of Algorithm 1 is given by the
complexity of Step 2, namely O(|q|3 log2 N([Ȟ | w])).



(a) (b)

Fig. 3. Visualization of qw ∈ qC(0)q̄∪|q|2C(0) together with qC(0)q̄ and |q|2C(0), for (a) q = 3+k
and (b) q = 3 + 4i + k, each of which induce bijective digitized rational rotation. Points qw are
depicted as blue spheres.

(a) (b)

Fig. 4. Visualization of qw ∈ qC(0)q̄ ∩ |q|2C(0) – in blue, qw ∈ qC(0)q̄ \ |q|2C(0) – in red, and
|q|2C(0) \ qC(0)q̄ – in green, for (a) q = 4 + k and (b) q = 2 − 3i − 2 j − 5k, each of which induces
a non-bijective digitized rational rotations.



5 Conclusion

In this article, we showed the existence of non-simple 3D bijective digitized rotations—
ones for which a given rotation axis does not correspond to any of the coordinate axes.

The approach is similar to that used by Roussillon and Cœurjolly to prove the
conditions for the bijectivity of 2D digitized rotations using Gaussian integers [17]. In
our work, we used Lipschitz quaternions, which play a similar role to Gaussian integers.
Due to the non-commutative nature of quaternions and their two-to-one relation with
3D rotations, the former approach has not succeeded yet to fully characterize the set of
3D bijective digitized rotations. Nevertheless, we proposed an algorithm that certifies
whether a digitized rotation given by a Lipschitz quaternion q is bijective or not. The
time complexity of proposed certification algorithm is O(|q|3 log2 N([Ȟ | w])).

As a part of our future work, we would like to prove Conjecture 1 and find the general
solution to Equation (6), which allows us to characterize the set of 3D bijective digitized
rotations. We may also consider images of finite sets (e.g. digital images or pieces
of ambient space). The bijective digitized rotations found above will map bijectively
any finite subset of Z3; but other (non-bijective) rotations may also be bijective when
restricted to a given finite subset. Identifying those can be achieved by applying a similar
algorithm to the one proposed by the authors in [16] for 2D rigid motions, though at a
greater cost.
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