A Vizing-like theorem for union vertex-distinguishing edge coloring - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

A Vizing-like theorem for union vertex-distinguishing edge coloring

Nicolas Bousquet
Antoine Dailly
Eric Duchene
Aline Parreau

Résumé

We introduce a variant of the vertex-distinguishing edge coloring problem, where each edge is assigned a subset of colors. The label of a vertex is the union of the sets of colors on edges incident to it. In this paper we investigate the problem of finding a coloring with the minimum number of colors where every pair of vertices receive distinct labels. Finding such a coloring generalizes several other well-known problems of vertex-distinguishing colorings in graphs. We show that for any graph (without connected component reduced to an edge or a single vertex), the minimum number of colors for which such a coloring exists can only take 3 possible values depending on the order of the graph. Moreover, we provide the exact value for paths, cycles and complete binary trees.
Fichier principal
Vignette du fichier
articleChiU.pdf (369.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01313088 , version 1 (09-05-2016)
hal-01313088 , version 2 (17-07-2017)

Identifiants

Citer

Nicolas Bousquet, Antoine Dailly, Eric Duchene, Hamamache Kheddouci, Aline Parreau. A Vizing-like theorem for union vertex-distinguishing edge coloring. 2016. ⟨hal-01313088v1⟩
605 Consultations
255 Téléchargements

Altmetric

Partager

More