Extremal measures maximizing functionals based on simplicial volumes
Résumé
We consider functionals measuring the dispersion of a d-dimensional distribution which are based on the volumes of simplices of dimension k ≤ d formed by k + 1 independent copies and raised to some power δ. We study properties of extremal measures that maximize these functionals. In particular, for positive δ we characterize their support and for negative δ we establish connection with potential theory and motivate the application to space-filling design for computer experiments. Several illustrative examples are presented.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...