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Abstract We consider functionals measuring the dispersion of a d-dimensional
distribution which are based on the volumes of simplices of dimension k ≤ d formed
by k + 1 independent copies and raised to some power δ. We study properties
of extremal measures that maximize these functionals. In particular, for positive
δ we characterize their support and for negative δ we establish connection with
potential theory and motivate the application to space-filling design for computer
experiments. Several illustrative examples are presented.
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1 Introduction

Let X be a compact subset of Rd and M be the set of probability measures on
the Borel subsets of X . We shall consider the class of functionals ψk,δ : M −→ R+

defined by
ψk,δ(µ) = Ψk,δ(µ, . . . , µ) , (1)

where

Ψk,δ(µ1, . . . , µk+1) =

∫
. . .

∫
V δ
k (x1, . . . , xk+1)µ1(dx1) . . . µk+1(dxk+1) ,
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for some δ in R and k ∈ {1, . . . , d}, with Vk(x1, . . . , xk+1) the volume of the k-
dimensional simplex (its length when k = 1 and area when k = 2) formed by the
k + 1 vertices x1, . . . , xk+1 in Rd. The volume Vk(x1, . . . , xk+1) can be computed
by the formula

Vk(x1, . . . , xk+1) =
1

k!
|det(A)|1/2 ,

with

A = X>X , X = [(x2 − x1) (x3 − x1) · · · (xk+1 − x1)] , (2)

where the matrix X has size d× k. Define the potential of µ at x ∈ Rd by

Pk,δ,µ(x) = Ψk,δ(µ, . . . , µ, δx) , (3)

where δx is the delta-measure at x and µ appears k times on the right-hand side.
Note that maxx∈X Pk,δ,µ(x) ≥ ψk,δ(µ) for all µ in M since

∫
Pk,δ,µ(x)µ(dx) =

ψk,δ(µ).
The case δ = 2 corresponds to an extension of the notion of Wilk’s generalized

variance and is considered in [11]. In this paper we investigate properties of the
functional (1) for general δ.

2 The case δ > 0

When δ is positive we are interested in the maximization of the functional ψk,δ(µ),
µ ∈M , and properties of an extremal measure µ∗ where the maximum is attained.

2.1 Functionals based on powered distances: k = 1

For k = 1, the functional ψk,δ(·) defined by (1) corresponds to

ψ1,δ(µ) = E{‖x1 − x2‖δ}

where x1 and x2 are supposed to be i.i.d. with the measure µ. Properties of measures
that maximize ψ1,δ(µ) for δ > 0 are investigated in [2]. In particular, it is shown
there that for any δ > 0 the mass of an optimal measure is concentrated on the
boundary of X and that the support only comprises the extreme points of the
convex hull of X when δ > 1. Also, the optimal measure is unique for δ < 2; it is
supported at no more than d+ 1 points when δ > 2.

We can give a more precise statement than in Theorem 2 of [2] for 0 < δ ≤ 2,
using the concavity of ψ1,δ(·), which follows from results discussed in [13] and is
based on the fact that B(λ) = λα is a Bernstein function for all 0 < α ≤ 1. Indeed,
using concavity of ψ1,δ(·), the measure µ∗ is extremal (i.e., it maximizes ψ1,δ(µ)
with respect to µ ∈M ) if and only if the directional derivative

Fψ1,δ
(µ; ν) = lim

α→0+

ψ1,δ[(1− α)µ+ αν]− ψ1,δ(µ)

α

satisfies Fψ1,δ
(µ∗k; ν) ≤ 0 for all ν ∈M . Direct calculation gives

Fψ1,δ
(µ; ν) = 2

[∫
P1,δ,µ(x) ν(dx)− ψ1,δ(µ)

]
(4)

and we thus obtain the following.
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Theorem 1 For any 0 < δ ≤ 2, the measure µ∗ maximizes ψ1,δ(µ) with respect to
µ ∈M if and only if

max
x∈X

P1,δ,µ∗(x) = ψ1,δ(µ
∗) .

Equivalently, µ∗ minimizes maxx∈X [P1,δ,µ(x)− ψ1,δ(µ)] with respect to µ ∈M .

In connection with the statement of the theorem, we may notice that the ex-
tremal measure µ∗ does not necessarily minimize maxx∈X P1,δ,µ(x), see [2, Th. 14].
In the next section we show how some of the properties that hold for k = 1 can be
generalized to the functionals ψk,δ(·) with k ≥ 2.

2.2 Functionals based on powered volumes: k ≥ 2

2.2.1 A necessary condition for optimality

First note that the existence of an extremal measure follows from the continuity of
Vk(x1, . . . , xk+1) in each xi, see [2, Th. 1].

Similarly to the case k = 1, we can compute the second order derivative of the
functional ψk,δ(·). Indeed, for any µ0, µ1 in M , we have

∂2ψk,δ[(1− α)µ0 + αµ1]

∂α2

∣∣∣∣
α=0

= k(k + 1) [Ψk,δ(µ0, . . . , µ0, µ1, µ1)

+Ψk,δ(µ0, . . . , µ0)− 2Ψk,δ(µ0, . . . , µ0, µ1)] ,

= k(k + 1)

∫ ∫
Pk,δ(x, y) [µ0 − µ1](dx)[µ0 − µ1](dy) ,

where Pk,δ(x, y) =
∫
. . .
∫

V δ
k (x1, . . . , xk−1, x, y)µ0(dx1) . . . µ0(dxk−1). The proof is

by direct calculation, using the symmetry of the kernel V δ
k (x1, . . . , xk+1) in (1).

For k = 1, P1,δ(x, y) = ‖x − y‖δ, and ψ1,δ(·) for δ ≤ 2 is concave as discussed

above. For δ = 2, concavity of ψ
1/k
k,2 (·) is proved in [11] for any k ∈ {1, . . . , d}. We

are not aware of any similar result for k > 1 and δ 6= 2, so that we have no guarantee
that ψk,δ(·), even raised to some power less than 1, is concave for δ 6= 2. Therefore,
we can only give a necessary condition of optimality for a measure µ∗ maximizing
ψk,δ(·). A similar result for k = 1 is Theorem 2 in [2].

Theorem 2 For any 0 < δ, if the measure µ∗ maximizes ψk,δ(µ) with respect to
µ ∈M , then

max
x∈X

Pk,δ,µ∗(x) = ψk,δ(µ
∗)

and Pk,δ,µ∗(x) = ψk,δ(µ
∗) on the support of µ∗.

The proof relies on a straightforward extension of (4) to k ≥ 1:

Fψk,δ(µ; ν) = (k + 1)

[∫
Pk,δ,µ(x) ν(dx)− ψk,δ(µ)

]
.

2.2.2 Support of extremal measures

Below we indicate some properties concerning the support of extremal measures
that generalize those in Section 2.1.

Theorem 3 For any δ > max{0, k + 1− d}, the support of any measure µ∗k maxi-
mizing ψk,δ(µ) is a subset of the boundary of X .
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Proof For δ > 1, we can simply use the convexity property of the L2 norm and
multilinearity of the determinant. Indeed, from Binet-Cauchy formula, the squared
volume V 2

k (x1, . . . , xk+1) can be written as

V 2
k (x1, . . . , xk+1) =

1

(k!)2

∑
1≤i1<i2<···<ik≤d

det2


{x1}i1 · · · {xk+1}i1

...
...

...
{x1}ik · · · {xk+1}ik

1 · · · 1

 . (5)

Each determinant in the right-hand side of (5) is linear in x1, so that, when δ > 1,
V δ
k (x1, . . . , xk+1) is a strictly convex function of x1. This implies that the potential
Pk,δ,µ∗k(x1) is strictly convex in x1. We then follow similar arguments to those in the
proof of [2, Th. 3]. Suppose that x1 is an interior point of X , and consider a sphere
S(x1, r) centered at x1 with radius r included in X . Strict convexity of Pk,δ,µ∗k(·)
implies that Pk,δ,µ∗k(x1) is strictly smaller than the mean value of Pk,δ,µ∗k(x) on
S(x1, r). From Theorem 2, this mean value is less than or equal to ψk,δ(µ

∗), and x1
cannot be support point of µ∗k.

For δ ≤ 1, the proof uses subharmonicity of Pk,δ,µ∗k(·) as in [2, Th. 3]. We only

need to prove that for fixed x2, . . . , xk+1, V δ
k (x1, . . . , xk+1) is a strictly subharmonic

function of x1. From Lemma 2, see Appendix, we have

d∑
i=1

∂2V δ
k (x1, . . . , xk+1)

∂{x1}2i
= δ(δ + d− k − 1) V δ

k (x1, x2, . . . , xk+1) (1>k A
−11k) ,

with A defined in (2) and 1k = (1, . . . , 1)> ∈ Rk. The right-hand side is strictly
positive when δ > k + 1− d. ut

Theorem 4 For any δ > 1 and any k ∈ {1, . . . , d}, any measure µ∗k maximizing
ψk,δ(µ) is supported on extreme points of the convex hull of X .

Proof As shown in the proof of Theorem 3, the potential Pk,δ,µ∗k(x) is a strictly
convex function of x when δ > 1. Suppose that x0 ∈ X is not an extreme point of
the convex hull of X . Then, x0 can be written as a linear combination of such points
zj with strictly positive weights summing to one. The potential Pk,δ,µ∗k(x0) is then
strictly less than the weighted sum of potentials at the zj , which, from Theorem 2,
are all less than or equal to ψk,δ(µ

∗). By the same theorem, x0 cannot be in the
support of µ∗k. ut

3 The case δ ≤ 0

When δ < 0, we are interested in the minimization of the functional ψk,δ(µ) =
E{V δ

k (x1, . . . , xk+1)}, µ ∈ M . Equivalently, we can consider the maximization of

ψ
1/δ
k,δ (µ), the continuous extension of which at δ = 0 is exp (E{log[Vk(x1, . . . , xk+1)]}).

We thus define

Dk,δ(µ) =

{(
E{V δ

k (x1, . . . , xk+1)}
)1/δ

for δ 6= 0 ,
exp (E{log[Vk(x1, . . . , xk+1)]}) for δ = 0 .

The results in Sections 2 have shown that when δ > 0 the support of a measure
that maximizes Dk,δ is sometimes finite and is always included in the boundary of
X when k ≤ d−1. The situation is quite different for δ ≤ 0, the case we investigate
in this section.

In the case k = 1, the investigation of the properties of extremal measures µ∗1,δ
and optimal values D∗1,δ = D1,δ(µ

∗
1,δ) is one of the main concerns of potential theory,
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see e.g., [12]. This is equivalent to studying the asymptotic behavior of the so-called
Fekete points, defined as follows. Given a natural number n and a real δ ≤ 0, the n
points Xn = (x1, . . . , xn) ∈X n are called Fekete points when they maximize

D̂1,δ(Xn) =

 2

n(n− 1)

∑
1≤i<j≤n

‖xi − xj‖δ
1/δ

(6)

for δ < 0 and

D̂1,0(Xn) = exp

 2

n(n− 1)

∑
1≤i<j≤n

log (‖xi − xj‖)

 (7)

for δ = 0, or equivalently minimize the s-energy, s = −δ, defined by E (s)(Xn) =∑
1≤i<j≤n ‖xi − xj‖−s for s > 0 and by E (0)(Xn) =

∑
1≤i<j≤n log ‖xi − xj‖−1 for

s = 0.
We shall denote by F

(s)
n a set of n Fekete points, s ≥ 0. For instance, when

X = [−1, 1], then the set F
(0)
n is uniquely defined and coincides with the zeros

of (1 − x2)P ′n−1(x), where Pn−1 is the Legendre polynomial of degree n − 1. One

may note that F
(0)
n corresponds to the support of a D-optimal design measure for

polynomial regression of degree n− 1 on [−1, 1], see, e.g., [3, p. 89].
The (logarithmic) transfinite diameter of X is defined by

τ (0)(X ) = lim
n→∞

exp

{
− 2

n(n− 1)
E (0)(F (0)

n )

}
(8)

where the convergence to the limit in (8) is monotonic (in the sense that the expo-
nential term in non-increasing with n). The logarithmic potential associated with

µ ∈M is P
(0)
µ (z) =

∫
log(1/‖z − t‖)µ(dt), the corresponding energy is defined by

I(0)(µ) =

∫
P (0)
µ (z)µ(dz) =

∫ ∫
log

1

‖z − t‖
µ(dt)µ(dz) .

Similarly, the transfinite diameter of order s > 0 is

τ (s)(X ) = lim
n→∞

{
2

n(n− 1)
E (s)(F (s)

n )

}−1
,

the s-potential for µ is P
(s)
µ (z) =

∫
‖z − t‖−s µ(dt) , with associated energy

I(s)(µ) =

∫
P (s)
µ (z)µ(dz) =

∫ ∫
1

‖z − t‖s
µ(dt)µ(dz) .

The minimum energy problem involves the determination of

I
(s)
∗ (X ) = inf{I(s)(µ) : µ ∈M } .

The logarithmic capacity of X , denoted by cap(0)(X ), is defined by cap(0)(X ) =

exp{−I(0)∗ (X )}; its s-capacity for s > 0 is cap(s)(X ) = [I
(s)
∗ (X )]−1. If cap(0)(X ) >

0, then the extremal measure µ∗1,0 exists with cap(0)(X ) = D1,0(µ∗1,0). Also, for any

s > 0, if cap(s)(X ) > 0 then µ∗1,−s exists and cap(s)(X ) = [D1,−s(µ
∗
1,−s)]

s. One
of the main results in potential theory is that the capacity of X coincides with its
transfinite diameter: cap(s)(X ) = τ (s)(X ) for all compact sets X . It also coincides
with supµ∈M D1,0(µ) when s = 0 and with supµ∈M [D1,−s(µ)]s when s > 0. When

cap(s)(X ) > 0, which happens in particular when X is a compact subset of Rd and
0 ≤ s < d, then µ∗1,−s exists, it is called s-energy equilibrium measure and is the
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weak limit of a sequence of empirical measures associated with Fekete points. Even
if cap(s)(X ) = 0 and no measure µ exists with I(s)(µ) <∞, it is still interesting to
study the limiting behaviour of empirical measures of Fekete points, see [4].

Fekete point are extremely difficult to construct, except for a few particular
cases. When s = 0, Fekete points necessarily lie on ∂∞(X ), the outer boundary
of X . This implies that the extreme (equilibrium) measure µ∗1,0 is supported on

∂∞(X ) too. Consequently, cap(0)(X ) = cap(0)(∂∞(X )). If the outer boundary
∂∞(X ) is a continuum, then supp(µ∗1,0) = ∂∞(X ). In general, ∂∞(X )\ supp(µ∗1,0)
has capacity zero.

Example 1: d = 1, X = [0, 1]. The extremal measure µ∗1,0 has the arcsine density

π0(t) =
1

π
√
t(1− t)

on [0, 1] and cap(0)(X ) = 1/4. More generally, the measure µ∗1,δ maximizing D1,δ(µ)
with δ ∈ (−1, 0] corresponds to the Beta distribution on [0, 1] with density

πδ(t) =
1

B[(1− δ)/2, (1− δ)/2]

1√
[t(1− t)]δ+1

,

see, e.g., [14]. This distribution is uniform for δ = −1, with E (0)(F
(0)
n ) growing

as n2 log n, and, as mentioned in [4], the limiting distribution of Fekete points is
uniform for every δ ≤ −1.

Example 2: X = Bd(0, ρ). As indicated in [4], the extremal measure µ∗1,δ maxi-
mizing D1,δ(·) is uniquely defined for −d < δ ≤ 0 (as the |δ|-energy equilibrium
measure). From [6, p. 163], −d < δ < 2− d, it has the density

ϕδ(x) =
C

(ρ2 − ‖x‖2)(d+δ)/2
, x ∈ Bd(0, ρ) ,

where C = Rδπ−d/2Γ (1− δ/2)/Γ (1− (d+ δ)/2). For 2− d ≤ δ ≤ 0, µ∗1,δ is uniform
on the sphere Sd(0, ρ). For δ ≤ −d, any sequence of Fekete points is asymptotically

uniformly distributed in Bd(0, ρ), with E (−δ)(F
(−δ)
n ) growing as n2 log n for δ = −d

and as n1−δ/d for δ < −d, see [4].

To the best of our knowledge, no theory is available which would cover the case
k > 1. In the next section we only present results concerning a particular example
which illustrate the difference with the case k = 1.

4 Particular case: X = Bd(0, ρ)

Take X = Bd(0, ρ), the closed ball of Rd centered at the origin 0 with radius ρ.

Case δ = 2. Let µ0 be the uniform measure on the sphere Sd(0, ρ) (the boundary
of Bd(0, ρ)). Then, the covariance matrix Vµ0 =

∫
xx> µ0(dx) is proportional to

the identity matrix Id, Vµ0 = ρ2Id/d. Take k = d. We have

max
x∈X

x>∇ψd,2 [Vµ0
]x =

(d+ 1)ρ2d

dd−1d!
= trace{Vµ0

∇ψd,2 [Vµ0
]} ,

where ∇ψd,2 [Vµ] = [(d + 1)/d!] det(Vµ)V −1µ is the gradient of ψd,2(µ) considered as
a function of Vµ, see [11]. From Theorem 4.1 in the same paper, this implies that
µ0 maximizes ψd,2(µ).
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Let µd be the measure that allocates mass 1/(d + 1) at each vertex of a d
regular simplex having its d+ 1 vertices on Sd(0, ρ), with squared volume ρ2d(d+
1)d+1/[dd(d!)2]. We also have Vµd = ρ2Id/d, so that µd also maximizes ψd,2(·). In
view of [11, Remark 4.2], µ0 and µd maximize ψk,2 for all k in {1, . . . , d}.

Let now µk be the measure that allocates mass 1/(k + 1) at each vertex of a k
regular simplex Pk, centered at the origin, with its vertices on Sd(0, ρ). The squared
volume of Pk equals ρ2k (k + 1)k+1/[kk(k!)2]. Without any loss of generality, we
can choose the orientation of the space so that Vµk is diagonal, with its first k
diagonal elements equal to ρ2/k and the other elements equal to zero. Note that
ψk′,2(µk) = 0 for k′ > k. Direct calculations give

ψk,2(µk) =
k + 1

k!

ρ2k

kk
≤ ψk(µ0) =

k + 1

k!

(
d

k

)
ρ2k

dk
,

with equality for k = 1 and k = d, the inequality being strict otherwise. Figure 1
presents the efficiency [ψk,2(µk)/ψk,2(µ0)]1/k as a function of k when d = 20.

0 2 4 6 8 10 12 14 16 18 20
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k

Fig. 1 Efficiency [ψk,2(µk)/ψk,2(µ0)]1/k as a function of k when d = 20

Case δ > 2. We can show that for any δ > 2 the measure µ maximizes ψd,δ(·) if
and only if it coincides with one of the measures µd introduces above.

The proof follows closely that of Theorem 7 in [2] which concerns the case k = 1.
We have

ψd,δ(µ) =

∫
V δ−2
d (x1, . . . , xd+1) V 2

d (x1, . . . , xd+1)µ(dx1) . . . µ(dxd+1)

≤ max
x1,...,xd+1

V δ−2
d (x1, . . . , xd+1)

∫
V 2
d (x1, . . . , xd+1)µ(dx1) . . . µ(dxd+1) . (9)

Since V ∗d = maxx1,...,xd+1
Vd(x1, . . . , xd+1) = ρd(d+ 1)(d+1)/2/[dd/2 d!] and the uni-

form measure µ0 on the sphere Sd(0, ρ) is extremal for ψd,2(·), we get

ψd,δ(µ) ≤
(
ρ2d(d+ 1)d+1

dd(d!)2

)δ/2−1
ψd,2(µ0) = ρdδ

(d+ 1)(d+1)δ/2−d

(d!)δ−1 ddδ/2
.

On the other hand, this is exactly the value ψd,δ(µd). Therefore, for the measure µ to
be extremal we need to have equality in (9), which requires that Vd(x1, . . . , xd+1) =
V ∗d for all (k + 1)-tuples that contribute to the integral. This forces the extremal
measure to have the form indicated.
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Consider the case d = 2, ρ = 1. Figure 2 presents the potential P2,δ,µ2
(x(t)) with

x(t) = (cos(t), sin(t)) as a function of t ∈ [0, 2π] for δ = 1 (left) and δ = 4 (right),
with µ2 allocating weight 1/3 at each of the three points (1, 0), (cos(2π/3), sin(2π/3))
and (cos(4π/3), sin(4π/3)). The value of ψ2,δ(µ2) is indicated in dashed line. The
figure illustrates the fact that µ2 is extremal for ψ2,4(·) but is not extremal for ψ2,1(·)
since the necessary condition of Theorem 2 is violated. The analytic forms for the
potentials are P2,1,µ2

(x(t)) = (
√

3/18)+(
√

3/9) cos(t)+(1/3) sin(t) for 0 ≤ t ≤ 2π/3
and P2,4,µ2

(x(t)) = 57/128 + (3/16) cos(3t) for 0 ≤ t ≤ 2π.
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Fig. 2 Potential P2,δ,µ2
(x(t)), with x(t) = (cos(t), sin(t)), as a function of t ∈ [0, 2π] (solid line)

and value of ψ2,δ(µ2) (dashed line) for δ = 1 (left) and δ = 4 (right); µ2 allocates weight 1/3 at
each point of an equilateral triangle with vertices on S2(0, 1)

Uniform measure on the circle S2(0, 1). Assume that k = d = 2, X = B(0, 1), and
consider the uniform measure µS on S2(0, 1), which is optimal for δ = 2.

Consider n-point sets Xn containing the points xj = (cos(2πj/n), sin(2πj/n)),
j = 0, . . . , n− 1, with empirical measure converging to µS . The empirical version of
(1) is

ψ2,δ(Xn) =
2

(n− 1)(n− 2)

n−2∑
i=1

n−1∑
j=i+1

V δ
2 (x0, xi, xj) .

Direct calculations give

ψ2,1(Xn) =
3n

2(n− 1)(n− 2)
cot(π/n) =

3

2π

(
1 +

3

n
+O

(
n−2

))
ψ2,2(Xn) =

3n2

23(n− 1)(n− 2)

ψ2,3(Xn) =
35

32π

(
1 +

3

n
+O

(
n−2

))
ψ2,4(Xn) =

45n2

27 (n− 1)(n− 2)

ψ2,5(Xn) =
3003

2560π

(
1 +

3

n
+O

(
n−2

))
ψ2,6(Xn) =

105n2

28 (n− 1)(n− 2)

ψ2,8(Xn) =
17325n2

215 (n− 1)(n− 2)

Figure 3 presents ψ2,δ(µS) as a function of δ ∈ [0, 8]. The stars indicate the exact
values obtained from the expressions above.
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Fig. 3 ψ2,δ(µS) as a function of δ ∈ [0, 8], for µS uniform on S2(0, 1)

By considering the potential P2,δ,µS (·) at the origin 0 for δ close to zero, we can
show that the necessary condition of Theorem 2 for µS being optimal is violated
for δ < 0. Indeed, we have

ψ2,δ(µS) = 1−(2 log 2) δ+c1δ
2+O(δ3) , P2,δ,µS (0) = 1−(2 log 2) δ+c2δ

2+O(δ3) ,

with c1 ' 2.1946 and c2 ' 1.3721, so that P2,δ,µS (0) < ψ2,δ(µS) for all δ 6= 0.
However, for negative δ, ψ2,δ(·) should be minimized, the necessary condition for
optimality of µ∗ becomes P2,δ,µ∗(x) ≥ ψ2,δ(µ

∗) for any x ∈ B(0, 1), and is thus
violated for µS at x = 0. Although µS is not optimal for negative δ, ψ2,δ(µS)
remains finite for δ > −2/3. If X is reduced to the circle S2(0, 1), then the n-point
sets Xn are Fekete points (in the usual sense, for k = 1) and can be considered as
generalized Fekete points for k = 2. One can show that ψ2,δ(Xn) = O(n−(2+3δ)) for
δ < −2/3.

On the other hand, for k = 1, the measure µS is optimal for 0 ≤ δ ≤ 2 and
ψ1,δ(µS) is finite for all δ > −1; limn→∞ E (1)(Xn)/(n2 log n) = 1 and E (−δ)(Xn)
grows like n1−δ (ψ1,δ(Xn) grows like n−(1+δ)) for δ < −1.

5 Generalized Fekete points and design criteria for computer
experiments

For a n-point sample, or design, Xn = {x1, . . . , xn}, n ≥ k+ 1, as extensions of (6)
and (7), we define

D̂k,δ(Xn) =

( n

k + 1

)−1 ∑
1≤j1<j2<···<jk+1≤n

V δ
k (xj1 , . . . , xjk+1

)

1/δ

, δ 6= 0 ,

and

D̂k,0(Xn) = exp


(

n

k + 1

)−1 ∑
1≤j1<j2<···<jk+1≤n

log
[
Vk(xj1 , . . . , xjk+1

)
] .

The functions D̂1,δ(·) with δ ≤ 0 have been suggested as criteria to be maximized
for the construction of space-filling designs for computer experiments. An optimal
design X∗n,1,δ maximizing D̂1,δ(Xn) is a set of Fekete points, as defined in Section 3.

In particular, D̂1,−2(·) corresponds to the energy criterion considered in [1]; see also
[8,9].
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Lemma 1 Take δ ≤ 0, k ∈ {1, . . . , d}, and consider a design Xn with D̂k,δ(Xn) >
0. Then, for any k′ ∈ {1, . . . , k}, the projection of Xn on any (d+1−k′)-dimensional
linear subspace contains at least bn/k′c+ n(mod k′) distinct elements.

Proof Take k′ ∈ {1, . . . , k}, any (k′ − 1)-dimensional subspace of Rd contains k′

points at most since otherwise one could find k + 1 points in the same (k − 1)-

dimensional subspace, contradicting the property D̂k,δ(Xn) > 0. Consider the pro-
jection pi of one point xi of Xn on a (d+1−k′)-dimensional linear subspace. There
are necessarily k′ points at most in Xn, including xi itself, that yield the same
projection pi. ut

One may notice the difference with the usual projection properties considered
in design for computer experiments, where only projections onto fixed canonical
subspaces are considered. For instance, Latin hypercube design [7] ensures that all
projections on coordinate axes have exactly n points; however, it does not protect
against all points lying on a single line.

Letting δ tend to −∞ in D̂1,δ(·) yields maximin-distance optimal design, see [5],
equivalent to the solution of a sphere-packing problem. More generally, for a given
sample Xn, we define

D̂k,−∞(Xn) = min
1≤j1<j2<···<jk+1≤n

Vk(xj1 , . . . , xjk+1
) . (10)

Then, D̂k,−∞(Xn) ≤ D̂k,δ(Xn) for any δ ∈ R, with limδ→−∞ D̂k,δ(Xn) = D̂k,−∞(Xn).

Also, if X∗n,k,δ ∈ X n maximizes D̂k,δ(·) and X∗n,k,−∞ ∈ X n is a maximin-optimal

design that maximizes D̂k,−∞(·), then we have the following bound on the maximin-
efficiency of X∗n,k,δ,

D̂k,−∞(X∗n,k,δ)

D̂k,−∞(X∗n,k,−∞)
≥
(

n

k + 1

)1/δ

,

see [10, Chap. 8]. In general, D̂1,δ(·) with δ not too small is easier to optimize than

D̂1,−∞(·), see, e.g., [1,8]; one may expect the same to be true for k > 1. Notice that
from the discussion in Section 3, it is recommended to choose δ ≤ −d to obtain
designs evenly spread over X when maximizing D̂1,δ(·). Also note that, contrary

to D̂1,−∞(Xn) which only depends on the relative distances between neighboring

pairs of points, the value of D̂k,−∞(Xn) with k > 1 is influenced by the respective
positions of points whatever their relative distances, see Lemma 1.

Example 3. We report the maximin optimal designs we have calculated for values
of n between 5 and 8 for d = 2 and X = [0, 1]2. Note that we have in fact equiva-
lence classes of optimal designs, considering symmetries ({x}i 7→ 1− {x}i, i = 1, 2)
and a permutation of coordinates; only one representant is indicated. We repre-
sent designs as matrices, with column i corresponding to coordinates of the i-th
design point. Maximin-distance optimal designs (k = 1) can be found for instance
at http://www.packomania.com/. We have used the following procedure to deter-

mine maximin optimal designs for D̂2,−∞(·): (i) a global random search algorithm,

initialized at a random Latin hypercube design, generates a first design X
(1)
n ; (ii)

a local maximization (subgradient-type method, see Appendix) initialized at X
(1)
n ,

generates a second design X
(2)
n ; (iii) the configuration of the best design obtained

after several repetitions of steps (i) and (ii) is used to determine analytically the
optimal design having this configuration. Although we only proved local optimality,
we conjecture that the designs presented are indeed optimal for D̂2,−∞(·).
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The maximin-distance optimal design (k = 1) with n = 5 points is

X∗5,1,−∞ =

[
0 1 1 0 1/2
0 0 1 1 1/2

]
,

with D̂1,−∞(X∗5,1,−∞) =
√

2/2 ' 0.70711. For k = 2, we get D̂2,−∞(X∗5,1,−∞) = 0
since the presence of a central point produces two alignements of three points. On
the other hand, the optimal design that we have obtained for D̂2,−∞(·) is

X∗5,2,−∞ =

[
1/3 1 1 1−

√
3/3 0

0 0 2/3 1
√

3/3

]
,

with D̂1,−∞(X∗5,2,−∞) =
√

2(1 −
√

3/3) ' 0.59771 and D̂2,−∞(X∗5,2,−∞) =
√

3/9 '
0.19245.

For n = 6, there exists a continuum of maximin optimal designs X∗6,2,−∞, of the
form

X∗6,2,−∞ =

[
1/2 1 1 1/2 0 0
0 1/2− a 1− a 1 1/2 + a a

]
, a ∈ [0, 1/2] ,

all with D̂2,−∞(X∗6,2,−∞) = 1/8. Notice that X∗5,2,−∞ and X∗6,2,−∞ do not contain
any central point.

For n = 7, we have obtained

X∗7,2,−∞ =

[
0 2/3 1 1 2/3 0 1/6
0 0 1/4 3/4 1 1 1/2

]
,

with D̂2,−∞(X∗7,2,−∞) = 1/12 ' 0.08333.
The maximin optimal design for k = 2 and n = 8 is

X∗8,2,−∞ =

[
a 1 1 1− a 0 0 c 1− c
0 0 1− b 1 1 b 1− b b

]
,

with a = (7−
√

13)/18, b = (5−
√

13)/6 and c = (7−
√

13)/9, with D̂2,−∞(X∗8,2,−∞) =

(1 +
√

13)(7−
√

13)/216 ' 0.072376.
The designs X∗5,2,−∞ to X∗8,2,−∞ are presented on Figure 4. The circles centered

at the design points have radius rn = D̂1,−∞(Xn)/2, with rn < D̂1,−∞(X∗n,1,−∞)/2
since the designs Xn are not maximin-distance optimal. On the other hand, any
triplet of design points forms a triangle with area at least D̂2,−∞(X∗n,2,−∞). Note
that for each n equality is achieved for several triplets of points. For instance, when
n = 5, the area of the four triangles ABE, ADE, CDE and BCD on Figure 4-top-left
equals D̂2,−∞(X∗5,2,−∞) =

√
3/9, and any other five-point design contains a triangle

with area A ≤
√

3/9.

Appendix

Lemma 2 Consider matrix A given by (2). The Laplacian of detα(A) considered
as a function of x1 is

d∑
i=1

∂2detα(A)

∂{x1}2i
= 2α(2α+ d− k − 1) detα(A) (1>k A

−11k) , (11)

where 1k = (1, . . . , 1)> ∈ Rk.
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n=5
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D

E
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n=7 n=8

Fig. 4 Optimal designs for D̂2,−∞(·) for n from 5 to 8; a = 3/7 in X∗6,2,−∞; the circles have

radius D̂1,−∞(Xn)/2

Proof We have

∂det(A)

∂{x1}i
= det(A) trace

(
A−1

∂A

∂{x1}i

)
∂2det(A)

∂{x1}2i
= −det(A) trace

(
A−1

∂A

∂{x1}i
A−1

∂A

∂{x1}i

)
+ det(A) trace2

(
A−1

∂A

∂{x1}i

)
+ det(A) trace

(
A−1

∂2A

∂{x1}2i

)
,

where ∂A/∂{x1}i = −[1k∆
>
i +∆i1

>
k ] and ∂2A/∂{x1}2i = 21k1

>
k , with ∆i = ({x2−

x1}i, . . . , {xk+1 − x1}i)> ∈ Rk. This gives

∂2det(A)

∂{x1}2i
= 2 det(A)

{
1>k A

−11k(1−∆>i A−1∆i) + (1>k A
−1∆i)

2
}
.

Noting that
∑d
i=1∆i∆

>
i = A, we have

∑d
i=1∆

>
i A
−1∆i = trace(Ik) = k and obtain

d∑
i=1

(
∂det(A)

∂{x1}i

)2

= det2(A)

d∑
i=1

trace2
(
A−1

∂A

∂{x1}i

)

= det2(A)

d∑
i=1

trace2
(
A−1[1k∆

>
i +∆i1

>
k ]
)

= 4 det2(A) 1>k A
−11k

and

d∑
i=1

∂2det(A)

∂{x1}2i
= 2 det(A) 1>k A

−11k (d+ 1− k) .
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Now,

∂detα(A)

∂{x1}i
= α detα−1(A)

∂det(A)

∂{x1}i
∂2detα(A)

∂{x1}2i
= α(α− 1) detα−2(A)

(
∂det(A)

∂{x1}i

)2

+ α det(A)α−1
∂2det(A)

∂{x1}2i
,

which finally gives (11). ut

A subgradient-type algorithm to maximize D̂k,−∞(·).
Consider a design Xn = (x1, . . . , xn), with each xi ∈X , a convex subset of Rd,

as a vector in Rn×d. The function D̂k,−∞(·) defined in (10) is not concave (due to
the presence of min), but is Lipschitz and thus differentiable almost everywhere.
At points Xn where it fails to be differentiable, we consider any particular gradient
from the subdifferential,

∇D̂k,−∞(Xn) = ∇vj1,...,jk+1
(Xn)

where xj1 , . . . , xjk+1
are such that Vk(xj1 , . . . , xjk+1

) = D̂k,−∞(Xn) and where
∇vj1,...,jk+1

(Xn) denotes the usual gradient of the function Vk(xj1 , . . . , xjk+1
). Our

subgradient-type algorithm then corresponds to the following sequence of iterations,

where the current design X
(t)
n is updated into

X(t+1)
n = PX

[
X(t)
n + γt∇D̂k,−∞(X(t)

n )
]
,

where PX [·] denotes the orthogonal projection on X and γt > 0, γt ↘ 0,
∑
t γt =

∞,
∑
t γ

2
t <∞.

Direct calculation gives

∂vj1,...,jk+1
(Xn)

∂{xj}`
=

{
0 if j 6∈ {j1, . . . , jk+1}
1
2k! det1/2(Aj1,...,jk+1

) trace
[
A−1j1,...,jk+1

∂Aj1,...,jk+1

∂{xj}`

]
otherwise,

where

Aj1,...,jk+1
=




(xj2 − xj1)>

(xj3 − xj1)>

...
(xjk+1

− xj1)>


[
(xj2 − xj1) (xj3 − xj1) · · · (xjk+1

− xj1)
] ,

so that

trace

[
A−1j1,...,jk+1

∂Aj1,...,jk+1

∂{xj}`

]
= 2

A
−1
j1,...,jk+1


{(xj2 − xj1)}`
{(xj3 − xj1)}`

...
{(xjk+1

− xj1)}`



j−1

for j ∈ {j1, . . . , jk+1}, j 6= j1, and

trace

[
A−1j1,...,jk+1

∂Aj1,...,jk+1

∂{xj1}`

]
= −2

k∑
i=1

A
−1
j1,...,jk+1


{(xj2 − xj1)}`
{(xj3 − xj1)}`

...
{(xjk+1

− xj1)}`



i

.
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