Entropic Metric Alignment for Correspondence Problems - Archive ouverte HAL Access content directly
Journal Articles ACM Transactions on Graphics Year : 2016

Entropic Metric Alignment for Correspondence Problems


Many shape and image processing tools rely on computation of correspondences between geometric domains. Efficient methods that stably extract "soft " matches in the presence of diverse geometric structures have proven to be valuable for shape retrieval and transfer of labels or semantic information. With these applications in mind, we present an algorithm for probabilistic correspondence that optimizes an entropy-regularized Gromov-Wasserstein (GW) objective. Built upon recent developments in numerical optimal transportation, our algorithm is compact, provably convergent, and applicable to any geometric domain expressible as a metric measure matrix. We provide comprehensive experiments illustrating the convergence and applicability of our algorithm to a variety of graphics tasks. Furthermore, we expand entropic GW correspondence to a framework for other matching problems, incorporating partial distance matrices, user guidance, shape exploration, symmetry detection, and joint analysis of more than two domains. These applications expand the scope of entropic GW correspondence to major shape analysis problems and are stable to distortion and noise.
Fichier principal
Vignette du fichier
gw.pdf (30.43 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01305808 , version 1 (22-04-2016)





Justin Solomon, Gabriel Peyré, Vladimir G. Kim, Suvrit Sra. Entropic Metric Alignment for Correspondence Problems. ACM Transactions on Graphics, 2016, Proc. SIGGRAPH 2016, 35 (4), pp.72:1-72:13. ⟨10.1145/2897824.2925903⟩. ⟨hal-01305808⟩
987 View
512 Download



Gmail Facebook X LinkedIn More