Intersection norms on surfaces and Birkhoff cross sections - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Intersection norms on surfaces and Birkhoff cross sections

Résumé

For every finite collection of curves on a surface, we define an associated (semi-)norm on the first homology group of the surface. The unit ball of the dual norm is the convex hull of its integer points. We give an interpretation of these points in terms of certain coorientations of the original collection of curves. Our main result is a classification statement: when the surface has constant curvature and the curves are geodesics, integer points in the interior of the dual unit ball classify isotopy classes of Birkhoff cross sections for the geodesic flow (on the unit tangent bundle to the surface) whose boundary is the symmetric lift of the collection of geodesics. Birkhoff cross sections in particular yield open-book decompositions of the unit tangent bundle.
Fichier principal
Vignette du fichier
IntersectionNorms-2020-09.pdf (1.5 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01305671 , version 1 (21-04-2016)
hal-01305671 , version 2 (08-07-2016)
hal-01305671 , version 3 (25-09-2020)
hal-01305671 , version 4 (06-12-2024)

Identifiants

Citer

Marcos Cossarini, Pierre Dehornoy. Intersection norms on surfaces and Birkhoff cross sections. 2016. ⟨hal-01305671v3⟩
285 Consultations
217 Téléchargements

Altmetric

Partager

More