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INTERSECTION NORMS ON SURFACES
AND BIRKHOFF CROSS SECTIONS

MARCOS COSSARINI AND PIERRE DEHORNOY

Abstract. A divide is a finite collection of unoriented closed curves in generic position on a real
orientable surface. Turaev associated to every divide a (semi-)norm on the first homology group
of the surface. The unit ball of the dual norm is the convex hull of finitely many integer points.
We give an interpretation of these points in terms of certain coorientations of the divide. Moreover
a divide can be lifted to a link in the unit tangent bundle to the surface and, when the divide is
formed of geodesic curves, its lift is made of periodic orbits of the geodesic flow. Our main result
is a classification statement: when the surface is hyperbolic and the divide is made of geodesics,
integer points in the interior of the unit ball of the dual norm classify isotopy classes of Birkhoff

sections for the geodesic flow (on the unit tangent bundle to the surface) whose boundary is the
symmetric lift of the divide. These Birkhoff sections also yield open-book decompositions of the
unit tangent bundle. All results remain true when one replaces the hyperbolic surface by a 2-
dimensional orientable hyperbolic orbifold.
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Introduction

This article has two goals. Firstly we study an elementary family of norms, that we call inter-
section norms, on the first homology group of a real orientable surface and we compute their unit
balls. These norms we first defined on the torus by Alexander Schrijver [Sch93] and on higher-
genus surfaces by Vladimir Turaev as a side remark [Tur02, Section 1.9]. They can be seen as
elementary cousins of both the Thurston norm on the second homology of a 3-manifold [Thu86]
and the Turaev norm on the first homology of a 2-complex [Tur02].

Secondly, we use these intersection norms to classify certain 2-dimensional objects in some
3-manifolds, namely, we classify up to isotopy Birkhoff cross sections with prescribed boundary
for the geodesic flow in the unit tangent bundle to a negatively curved surface.

In this introduction, we give a rather detailed description of all results and of several ideas that
underlie the paper. Our hope is that the experts get a good picture by only reading the introduc-
tion. The next sections contain the proofs, which are rather elementary (although not necessarily
obvious).

Intersection norms. Let Σ be a real compact surface with empty boundary. A divide1 on Σ is a
finite collection of unoriented compact circles immersed in Σ and in
general position (that is, all multiple points are double points where
the two arcs are transverse). A divide can be seen as a graph embed-
ded in Σ, with vertices of degree 4.

The geometric intersection number of two multi-curves is usually defined as the minimum of
the number of intersection points of two representants of the free homotopy classes of the two
multi-curves that have disjoint double points. We use here a variation of this notion where we fix
one multi-curve (the divide), but minimize over the homology class of the second.

So, let γ denote a fixed divide on Σ. For α a path on Σ, the geometric intersection iγ(α) is
the minimal number of intersection points with γ of a multi-curve homotopic to α and in general
position with respect to γ. Beware that this definition is not symmetric since the divide γ is fixed
and not allowed to change in its homotopy class. Given a homology class a in H1(Σ;Z), we then
minimize the intersection number over all closed multi-curves in a in general position with respect
to γ. This defines a function xγ : H1(Σ;Z)→ N by

xγ(a) := min
[α]=a

iγ(α) = min
[α]=a
αtγ

∣∣∣{α ∩ γ}∣∣∣.
Theorem A. [Sch93, Tur02] Let Σ be a compact oriented surface and γ a divide on Σ. The
function xγ extends uniquely to a continuous function xγ : H1(Σ;R) → R+, which is convex,
and linear on rays from the origin. If, furthermore, the divide γ fills Σ in the sense that the
complement Σ \ γ is the union of topological discs, then xγ is a norm (that is, it is different from 0
for non-zero vectors).

1The notions of divide curves and divide knots were introduced by Nobert A’Campo [A’C98] who, along with Sabir
M. Gusein-Zade, studied divides on the disc in the context of singularities [A’C75, GuZ74, GuZ77]. They were later
generalized to arbitrary surfaces by Masaharu Ishikawa [Ish04]. This terminology is maybe not so common in the world
of surface topologists, but since we will then lift our divides to the unit tangent bundle and consider fibrations of their
complement over the circle, as did A’Campo, Gusein-Zade, and Ishikawa, it seems fair to use this terminology here.
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The function xγ is called the intersection norm associated to γ. Theorem A is an exact
transposition of Bill Thurston’s result defining a norm on the second homology group of a 3-
manifold [Thu86, Thm 1]2. Intersection norms are also related to Turaev’s norms on the first
cohomology of finite 2-complexes [Tur02] in the sense that, for some particular 2-complexes built
out of a divide, the Turaev norm reduces to the intersection norm associated to the corresponding
divide.

Like the Thurston and Turaev norms, the (semi-)norm xγ has the property of taking integer
values on integer classes. This implies (see [Thu86, Thm2]) that the unit ball, denoted here by Bxγ ,
is very peculiar : it is a polyhedron with finitely many faces, which are all given by linear equations
with integer coefficients. Equivalently, the closed unit ball of the dual norm on H1(Σ;R), denoted
here by B∗xγ , is the convex hull of finitely many integer points.3

In the case of the Thurston norm, some of these extremal points of the dual ball could be
interpreted using Euler classes of fibrations on the circle [Thu86, Thm 3] or more generally of
Reebless foliations, see [CC03, chap. 10]. An interpretation of all extremal points was then given
in terms of Euler class of taut foliations by David Gabai (unpublished, see [Yaz16, Thm 3.3]), and
in terms of flows by Danny Calegari [Cal06].

The analog statement for intersection norms is simpler. A coorientation of an arc α in the
surface Σ is an orientation on the normal bundle of α in Σ, in other words, a continuous function η
from the set of vectors transverse to α (tangent to Σ at points of α, but not tangent to α) to the
discrete space {+1,−1}, such that η(−v) = −η(v) for each v. Considering a divide γ as a graph
whose vertices are the double-points and whose edges are the simple arcs connecting the double
points, a coorientation of γ is the choice of a coorientation for every edge of γ. A given divide has
only finitely many coorientations (the exact number is 2|E(γ)|). An example is depicted with light
blue arrows on Figure 1 left. Given a coorientation η of γ, every double point p of γ has 4 adjacent
edges. Travelling around p, each of these four edges is crossed either positively with respect to η,
or negatively. A coorientation is Eulerian if, around every double point, there are two positively
and two negatively cooriented edges. For example the coorientation depicted on Figure 1 is Euler-
ian. A coorientation η can be paired with an oriented curve α in general position using signed
intersection. If η is Eulerian, it turns out that the pairing η(α) depends only on the homology class
of α, so that an Eulerian coorientation η induces an integral cohomology class [η] ∈ H1(Σ;Z).4

One can wonder which classes are represented by such Eulerian coorientations.
A first remark is that, representing a class a by a curve α which minimises the geometric in-

tersection with γ, one sees that |η(a)| is not larger than xγ(a). A second remark is that the parity
of η(a) is fixed by γ : indeed, since all intersection points are counted with a coefficient ±1, the
parity of η(α) is determined by the parity of iγ(α) and does not depend on η; since γ is a graph of
even degree, the parity of iγ(α) does not change if we replace α by a homologous curve. Our first
result states that these restrictions are the only ones: the classes of the Eulerian coorientations are

2It is likely that Thurston actually thought about intersection norms on the 2-torus when proving [Thu86, Thm 6].
3Thurston’s proof of this fact is not as natural as one might expect. In particular most available proofs rely on an

induction on the dimension, which may seem superfluous. Mikael De La Salle recently gave a more direct proof [Sal16].
4According to the universal coefficients theorem for cohomology, for any abelian group G, the cohomology group

H1(Σ,G) is naturally isomorphic to the group Hom(H1(Σ;Z); G) of group homomorphisms from H1(Σ;Z) to G. How-
ever, in this article we can take this identification as the definition of H1(Σ; G), since the usual definition of cohomology
groups (as homology groups of the singular cochain complex) will not be used.
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exactly the integer points in B∗xγ that are congruent to [γ]2 mod 2 in the previous sense. More
interestingly, the extremal points of B∗xγ correspond to some Eulerian coorientations.

Theorem B. Let Σ be a compact oriented surface and γ a divide on Σ. The dual unit ball B∗xγ
in H1(Σ;R) is the convex hull of the points in H1(Σ;Z) given by all Eulerian coorientations of γ.
Equivalently, for every a in H1(Σ;Z), we have

xγ(a) = min
[α]=a

iγ(α) = max
η Eulerian
coor. of γ

η(a).

Moreover every point in B∗xγ∩H1(Σ;Z) that is congruent to [γ]2 mod 2 is the class of some Eulerian
coorientation (see Figure 1).

Figure 1. Illustration of Theorems B and D. On the left, a divide γ consist-
ing of four geodesics on the torus T2, and an Eulerian coorientation (blue ar-
rows). Seen as a graph is has 5 vertices and 10 edges. On the right, the dual unit
ball B∗xγ ⊂ H1(T2,R) of the associated intersection norm. The empty circle de-
notes the origin. The big dots denote those classes in H1(T2,Z) congruent to [γ]2
mod 2. Among these classes, 10 (in blue, green an red) are in the dual unit ball B∗xγ
and correspond to all cohomology classes of Eulerian coorientations of γ (The-
orem B). For example, the class corresponding to the blue coorientation is the
blue point. The blue and green points lie in the interior of B∗xγ , hence describe the

two isotopy classes of Birkhoff cross sections for ϕgeod bounded by −
↔
γ , while the

8 red points are on the boundary of B∗xγ and describe isotopy classes of surfaces

transverse to ϕgeod, but not intersecting every orbit, and bounded by −
↔
γ (Theo-

rem D).

Theorem B was actually proven in the case of the torus by Schrijver with different methods
(see [Sch92, Thm 9]).

Not only does this result provide an interpretation of the integer points inside the unit ball of the
dual norm, it also gives an effective way for computing the norm xγ, since it reduces the minimisa-
tion over an infinite number of curves into a maximisation over a finite number of coorientations.

One can wonder what happens when the divide γ changes, in particular when one is given a
Riemannian metric on the surface and one considers a sequence γn of divides whose lengths tend
to infinity. It is not hard to see (Remark 9 below) that if (γn) is a sequence of closed geodesics that
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tend in the weak topology to the Liouville measure associated to the metric, then the norms xγn ,
appropriately rescaled, tend to the stable norm associated to the metric.

Classification of Birkhoff cross sections for geodesic flows. We now turn to our main result.
Let M be a compact, orientable smooth n-manifold without boundary, and let X be a non-singular
vector field on M. In order to understand the dynamics of X it is desirable to find a global cross
section for (M, X), namely a compact, orientable hypersurface S without boundary such that

• S is embedded in M,
• S is transverse to X,
• every orbit of X intersects S after a bounded time: we have φ[0,T ](S ) = M for some T > 0.

When such a section exists, there is a well-defined first-return map on S and the first-return time
is bounded from above by definition and from below by compactness. In this case the manifold M
fibers over the circle with fiber S . The pair (M, X) is homeomorphic to (S×[0, 1]/(p,1)∼( f (p),0), τp

d
dz ),

where τp is the first-return time on S and d
dz denotes the vector field tangent to the [0, 1]−coordinate.

The dynamics of X is then, up to the time-reparametrisation function τ, the dynamics of the first-
return map f on S .

A standard topological argument shows that two global sections are isotopic if and only if they
are homologous. Indeed the flow realizes the isotopy between such homologous sections (see for
example the discussion at the beginning of [Thu86, Section 3]). Therefore questions of existence
and classification of global sections are of algebraic nature. Indeed, a necessary and sufficient
condition for a given homology class σ in H2(M;Z) to contain a global section has been described
by Sol Schwartzman [Sch57]. The quickier way to express it requires to consider measures as
currents and to consider their homology classes: given a X-invariant probability measure µ, the
associated 1-current cµ is the linear functional on the space Ω1(M) of 1-forms defined by cµ(φ) =∫

M φ(X(p))dµ(p). Since µ is invariant, cµ is closed as a current, hence it induces a cohomology
class [cµ] in H1(M). The latter is called the Schwartzman asymptotic cycle associated to µ. The
condition of Schwartzman (restated later by Fuller, Sullivan, and Fried [Ful65, Sul76, Fri82]) is
that X admits a global section if and only if the set of all Schwartzman asymptotic cycles lies
in the half-space {〈σ, ·〉 > 0}, where 〈·, ·〉 denotes the algebraic intersection pairing H2(M;R) ×
H1(M;R) → R. This implies for example that vector fields on S3 never admit global sections.
Further results of Bill Thurston [Thu86] and David Fried [Fri82] imply that in the case of a pseudo-
Anosov flow, the set of homology classes of global sections is an open cone with finitely many
extremal rays.

For Σ a Riemann surface, the unit tangent bundle T1Σ is the subset of TΣ of norm 1-vectors.
It is a 3-manifold whose points are of the form (p, v) for p a point of Σ and v a tangent vector
at p of norm 1. The geodesic flow ϕgeod on T1Σ is the flow whose orbits are lifts of geodesics:
for g an arbitrary geodesic of Σ travelled at speed 1, the orbit of ϕgeod going through (g(0), ġ(0))
is given by ϕt

geod(g(0), ġ(0)) = (g(t), ġ(t)). The geodesic flow on a negatively curved surface has
been studied since Jacques Hadamard who remarked its sensibility to initial condition [Had1898].
It even became the paradigm of 3-dimensional chaotic systems when Dmitri Anosov showed its
hyperbolic character [Ano67]. In general the geodesic flow depends heavily on the metric given on
the surface. However Mikhail Gromov remarked [Gro76] that the geodesic flows corresponding
to any two negatively curved metrics on a surface are actually topologically conjugated, meaning
that there is a homeomorphism of the tangent bundle sending the oriented orbits the first on the
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oriented orbits of the second. This is a consequence of the structural stability of Anosov flows.
Therefore, as long as we are only interested in the topological properties of the orbits, one can
speak of the geodesic flow on a negatively curved surface.

Since the antipodal map (p, v) 7→ (p,−v) preserves the geodesic flow, its set of asymptotic
cycles is symmetric with respect to the origin in H1(T1Σ;R), so that geodesic flows never admit
global sections.

In order to make it useful, a relaxation of the notion of global section is desirable. A good
solution was proposed by Henri Poincaré and George Birkhoff [Bir17]. For M a real compact,

oriented 3-manifold and X a non-singular vector field
on M, a Birkhoff cross section for (M, X) is compact ori-
entable surface S with boundary such that

• the interior int(S ) is embedded in M,
• int(S ) is transverse to X,
• the boundary ∂S is tangent to X,
• every orbit of X intersects S after a bounded time:

we have φ[0,T ](S ) = M for some T > 0.
The third condition implies that the boundary of S is the union of finitely many periodic orbits

of X, possibly with multiplicities. The second and third conditions may look hard to realize at the
same time, but actually it is not the case: in a flow box oriented so that the vector field is vertical,
the general picture of a Birkhoff cross section near its
boundary is that of one or several coaxial helicoidal stair-
cases. Since the interior of a Birkhoff cross section S is
transverse to X, it is cooriented by X. Since M is oriented,
this induces an orientation on S , and in turn an orientation
of ∂S . On the other hand, ∂S is a collection of periodic
orbits of X, so it is oriented by X. For every component γ
of ∂S , we can then define the multiplicity of γ as the alge-
braic number of times one sees γ in ∂S . In the whole text
we restrict our attention to Birkhoff cross sections such that
every boundary component has multiplicity −1. It negative positive
would be more natural to consider Birkhoff sections such that every boundary component has
multiplicity +1, but it turns out that there are none. On the other hand classifying mixed sections
where the multiplicities are ±1, or even general sections with arbitrary mulitplicities is an ongoing
project.

If the fourth condition in the definition is not satisfied, namely some orbits do not intersect the
considered surface, we simply speak of a transverse surface.

It turns out that Birkhoff cross sections exist much more often than global sections. In particular
Poincaré noticed that the geodesic flow on a sphere often admits an annulus as Birkhoff cross
section. This remark was generalized by Birkhoff who gave a family of Birkhoff cross sections
for the geodesic flow [Bir17] (popularized in [Fri83]). Birkhoff’s example was then given another
presentation by Marco Brunella [Bru94, Description 2]. Our second result is a generalization of
Birkhoff’s and Brunella’s examples.

For γ an unoriented collection of geodesics on a surface Σ, we denote by ↔γ the antithetic lift of γ
in T1Σ, that is, the set of unit tangent vectors based on γ and tangent to γ. The set ↔γ forms a link that
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is invariant by the involution (p, v) 7→ (p,−v). It is the union of 2|γ| periodic orbits of ϕgeod, each
component being oriented by the flow. The antithetic lift of a collection of geodesics was actually
already used by Birkhoff [Bir17] who (in modern terms) described a fibration of the complement
over the circle. It was later called a divide link by A’Campo who gave another description of the
same fibration (and so did later Giroux [Gir91, Example I.4.8]). Another fibration was sketched by
Brunella [Bru94, Description 2]. Here we use Eulerian coorientations in order to describe many
fibrations :

Theorem C. Let Σ be a compact oriented Riemann surface and γ a finite collection of closed
geodesics on Σ. There is canonical a map SBB (for Birkhoff-Brunella) that associates to every
Eulerian coorientation η of γ an oriented surface SBB(η) in T1Σ which is positively transverse
to the geodesic flow and whose oriented boundary is −↔γ . For every η, the Euler characteristic
of SBB(η) is minus twice the number of double points of γ.

If two Eulerian coorientations η1, η2 of γ are cohomologous and if the associated surfaces SBB(η1)
and SBB(η2) are Birkhoff sections for the geodesic flow, then they are isotopic (fixing their common
boundary).

It turns out that this new construction gives a description of all isotopy classes of Birkhoff

cross sections with oriented boundary −↔γ, instead of one with the previously known constructions.
Recall that a collection of curves is filling if its complement in the surface is a union of topological
discs.

Theorem D. Let Σ be a surface of genus at least 2 with a negatively curved metric. Let γ be a
finite collection of closed geodesics on Σ.

If γ is filling, then the map [η] 7→ {SBB(η)} is a one-to-one correspondance between integer
points in the open unit ball int(B∗xγ) congruent to [γ]2 mod 2 and isotopy classes of Birkhoff cross
sections for ϕgeod in T1Σ with boundary −↔γ.

If γ is not filling, then there is no surface bounded by −↔γ and transverse to the geodesic flow.

Theorem D implies that the collection ↔
γ bounds a Birkhoff cross section with all mutiplicities

equal to −1 if and only if the polyhedron B∗xγ contains an integer point congruent to [γ]2 mod 2
in its interior. This is the case for most choices of γ, but not for all. For example, if there is a
closed curve that intersects γ only once, then ↔

γ does not bound a Birkhoff cross section for ϕgeod,
although the interior of B∗xγ may not be empty.

Remark 1. The case of the torus with a flat metric is not covered by Theorem D. In this case, the
fact that the unit tangent bundle T1T2 is trivial allows to cut-and-glue horizontal tori to Birkhoff

cross sections, so that there are in general infinitely many isotopy classes with a given boudary.
However, up to this additional operation, there are still only finitely many classes. These have
been classified in a previous work by the second author [Deh15a, Thm 3.12]. The statement is
similar, namely equivalence classes of Birkhoff sections are classified by point in the interior of a
certain polygon with integral vertices. The statement if even more general since, in this restricted
case of the torus, there is no assumption that the boundary of the section is antithetic. One could
recover this earlier result in the antithetic case by a proof very similar to that of Theorem D.

Remark 2. A Birkhoff surface for the geodesic flow in T1Σ bounded by ↔
γ is a global section for

the restriction of the flow to T1Σ \
↔
γ. The assumption that the oriented boundary is −↔γ can be
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seen as a restriction on the homology class of the section : it has to lie in a certain affine subspace
of H2(T1Σ,

↔
γ;Z) (see Section 3.c). On the other hand, as explained before, the geodesic flow

on T1Σ for Σ a hyperbolic surface is of Anosov type. Its restriction to T1Σ \
↔
γ is then of pseudo-

Anosov type, with singularities along the removed orbits. Thurston fibered faces Theory [Thu86,
Section 3] then says that the homology classes of global sections to such a flow (and therefore
also the isotopy classes) is a cone in H2(T1Σ,

↔
γ;R) whose extremal rays are directed by integral

vectors. David Fried [Fri82] gives an algorithm to explicitly compute these vectors, starting from
a Markov partition of the flow. So one directly deduces that the set of Birkhoff cross sections with
prescribed boundary is given by the intersection of a cone with an affine plane: it is a polyhedron.
However, the determination of this polyhedron using Fried’s approach requires an explicit Markov
partition for the geodesic flow on T1Σ\

↔
γ, which does not exist yet. Even if it did, it is not clear that

this would yield an explicit and elementary description of the polyhedron for every collection γ.
Theorem D can be rephrased by saying the Thurston’s fibered face corresponding to the geodesic
flow on T1Σ \

↔
γ is a multiple of B∗xγ . From this perspective, the interest of our paper lies in the

elementary and explicit characters of all constructions.

Remark 3. One may wonder how general Theorem D is, namely whether one can hope for an
analog theorem for any (transitive) Anosov flow. The previous remark extends to this context : the
set of Birkhoff sections up to isotopy fixing the boundary is described by the integral points inside
a certain polyhedron. However we do not know how to describe this polyhedron in general. It
seems to be related to linking numbers of periodic orbits of the flow. However linking numbers are
only defined for null-homologous links. Ghys [Ghy09] proved that Gauss linking forms describe
all linking numbers between periodic orbits (and even invariant measures) for a vector field in
a homology sphere. Moreover he showed how to use these Gauss forms to decide whether all
finite collections of periodic orbits bound a Birkhoff sections (the so-called left- or right-handed
flows). Probably one should then first extend the concept of Gauss linking forms to manifolds
that are not rational homology spheres, and see how this helps defining linking of periodic orbits
and more generally of invariant measures. Then one could hope that these generalized linking
describe exactly the homological information needed to apply Schwartzman’s criterion, as we will
do in Section 3.

Extension to 2-dimensional orbifolds. The results of this paper can be generalized in the fol-
lowing sense. Instead of considering only orientable surfaces, one can consider orientable 2-
dimensional orbifolds, as introduced by Thurston [Thu80]. Such a 2-orbifold O is described by
an orientable topological surface ΣO and charts that are local homeomorphisms R2/(Z/kZ)→ ΣO,
where Z/kZ acts by rotation on R2.

There are several possible definitions for the homology of an orbifold that yield different spaces.
The one that is useful here is the most elementary: we define Hi(O;R) to be the space Hi(ΣO;R).
In this context the definition of intersection norms extends trivially. Theorems A and B still hold.

Now the unit tangent bundle T1O is 3-manifold that is a Seifert fibered space over ΣO. The
geodesic flow is well-defined on T1O and it is still of Anosov type. Theorem C extends directly in
this context. Concerning Theorem D, it has to be modified for taking into account orbifolds that
are homology spheres (a case that does not occur with hyperbolic surfaces).

Theorem E. Let O be a hyperbolic orientable 2-dimensional orbifold. Let γ be a finite collection
of closed geodesics on Σ.
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If ΣO is a sphere, then T1O is a rational homology sphere. In this case the lift ↔γ bounds a
Birkhoff section for the geodesic flow in T1O if and only if γ is filling in ΣO. If it exists, the Birkhoff
section is unique up to isotopy fixing the boundary.

If ΣO is not a sphere and if γ is filling, then the map [η] 7→ {SBB(η)} is a one-to-one correspon-
dance between integer points in the open unit ball int(B∗xγ) congruent to [γ]2 mod 2 and isotopy
classes of Birkhoff cross sections for ϕgeod in T1Σ with boundary −↔γ.

If ΣO is not a sphere and γ is not filling, then there is no surface bounded by −↔γ and transverse
to the geodesic flow.

A particular case is when O is a triangular orbifold (that is, a sphere with three conic points). In
this case every collection γ of closed geodesic is filling, hence its lift ↔γ bounds a Birkhoff section
(see [Deh17] for another proof of this fact).

Acknowledgments. Pierre D. thanks Étienne Ghys and Adrien Boulanger for related discussions,
and Elena Kudryavtseva who initiated this article by asking several questions about Birkhoff cross
sections. The authors thank and anonymous referee for useful suggestions, in particular the exten-
sion to orbifolds.

1. Intersection norms

In this section we define intersection norms and prove Theorem A5. All statements are elemen-
tary transcriptions of results of Thurston [Thu86] to the 2-dimensional context of a surface with a
divide on it.

For the whole section we fix a compact surface Σ of genus g without boundary, and a divide γ
on Σ. Given a closed multi-curve α transverse to γ and such that the multiple points of α and γ
are disjoint, there is a finite number of intersection points between α and γ. What we do here is to
minimize this finite number over the homology class of α:

Definition 4. (see Figure 2) A divide γ being fixed on Σ, the function xγ : H1(Σ;Z) → N is
defined by

xγ(a) := min
[α]=a

iγ(α) = min
[α]=a
αtγ

|α ∩ γ |.

Since the number of intersection points is an integer, the lower bound is always realized and xγ
takes integral values. A multi-curve that realizes the minimum is declared xγ-minimizing.

The function xγ has two properties that will turn it into a semi-norm, namely it is linear on rays
and convex. To prove the first point we need an elementary remark. Let us recall that a multi-curve
is simple if it has no double points, that is, if it is an embedding.

Lemma 5 (simplification). For every divide γ in Σ and for every class a in H1(Σ;Z), there exists
a xγ-minimizing multi-curve in a that is simple.

Proof. Starting from an arbitrary α0 in a that is minimizing, we can smooth the double points
of α0 away from γ

5Although Theorem A is not new, Turaev only sketched a proof [Tur02]. We include a detailed version, as it is short
and elementary.



10 MARCOS COSSARINI AND PIERRE DEHORNOY

α1

α2

Figure 2. A genus 3 surface with a divide γ made of four closed curves (black). On the
left the curve α1 (orange and bold) is transverse to γ and intersects it three times. On the
right α2 (red) is homologous to α1 since their difference bounds a subsurface, namely the
right hemisurface. The curve α2 intersects γ only once. This number cannot be reduced
to 0 in the same homology class, hence α2 is xγ-minimizing and we have xγ([α1]) =

xγ([α2]) = iγ(α2) = 1.

thus turning α0 into a new multi-curve α which is simple. The two multi-curves are in general not
homotopic, but they are homologous, hence the result. �

Lemma 6 (linearity on rays). For every a in H1(Σ;Z) and for all n ∈ Z one has

xγ(n · a) = |n| xγ(a).

Proof. Since one does not change the number of intersection points by reversing the orientation
of a curve, one has xγ(−a) = xγ(a).

We then assume n > 0. Given a ∈ H1(Σ;Z), consider a minimizing multi-curve α in a. Since n
parallel copies of α intersect γ in n xγ(a) points, we have xγ(n · a) ≤ n xγ(a).

For the other inequality, consider a multi-curve α(n) that minimizes xγ(n · a). By the simpli-
fication Lemma 5, we can suppose α(n) simple. Since α(n) is homologous to n copies of α, its
number of crossings (counted with signs) with any generic loop is a multiple of n. So, starting
from an arbitrary region in the complement Σ \ α(n) that we label with the number 0 ∈ Z/nZ, we
can label the other regions with the numbers 0, 1, . . . , n−1 ∈ Z/nZ in such a way that the color
increases by 1 mod n when one crosses an arc of α(n) positively (from right to left). Therefore α(n)

is the union of the n simple multi-curves αi, each such αi consisting on the components of α(n) that
run leaving the regions labelled i on their right, and the regions labeled i + 1 on their left. Since
they pairwise bound a subsurface of Σ, all of these n multi-curves are homologous. These implies
that α(n) is homologous to n copies of any αi. Since it is also homologous to n copies of α, and
H1(Σ;Z) has no torsion, we conclude that each αi is homologous to α. Then it has at least xγ(a)
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intersections with γ, which implies that α(n) has at least nxγ(a) intersections with γ, thus proving
the inequality xγ(n · a) ≥ n xγ(a). �

Lemma 7 (convexity). For every a, b in H1(Σ;Z) one has

xγ(a + b) ≤ xγ(a) + xγ(b).

Proof. The union of two multi-curves that realize xγ(a) and xγ(b) crosses γ in xγ(a)+ xγ(b) points,
giving xγ(a + b) ≤ xγ(a) + xγ(b). �

Proof of Theorem A. Every class in H1(Σ;Q) is of the form 1
q a with a ∈ H1(Σ;Z) and q ∈ N∗.

We then define xγ( 1
q a) as 1

q xγ(a), and the linearity on rays (Lemma 6) ensures that this definition
does not depend on the choice of q and a and that it yields a well-defined function (also denoted
by xγ) from H1(Σ;Q) to Q+ that is linear on rays. Now convexity (Lemma 7) implies that this
function extends uniquely to a convex function from H1(Σ;R) to R+. Indeed the extension can be
defined by taking the convex hull of the epigraph (what lies above the graph), or, more precisely,
the supremum of the linear functions that are smaller than xγ. The extension (still denoted by xγ)
is also convex and linear on rays, hence it is a semi-norm on H1(Σ;R).

If the collection γ decomposes Σ into simply-connected regions, then γ intersects every curve
that is not null-homotopic at least once. This implies that xγ is at least 1 on non-zero integral
homology classes, hence xγ is positive on H1(Σ;R) \ {0}. Therefore xγ is a norm. �

Remark 8. One can easily extend the notion of intersection norms to surfaces with boundary, by
allowing divides to contain arcs with endpoints on the boundary of the surface (as did A’Campo
originally). One then obtains two norms on H1(Σ;R) and H1(Σ, ∂Σ;R), depending whether one
considers absolute or relative homology classes. Theorem A also holds in the second context.

Remark 9. One can wonder how the intersection norms compare with other known norms on
the first homology of a surface. For example the stable norm xg is defined in terms of a met-
ric g by xg(a) = lim inf

n→∞
min
α(n)∈na

g(α(n))/n. On a surface the stabilisation is not necessary, so that

xg(a) = min
α∈a

g(α). One can check that if (γk)k∈N is a sequence of filling geodesics for g, meaning

that the sequence of invariant measures on T1Σ that are concentrated on the lift ~γk tends in the
weak sense to the Liouville measure defined by g on T1Σ, then the rescaled norms 1

g(γk) xγn tend
to the stable norm of g. Equivalently, the rescaled unit balls g(γk)Bxγk

tend to the unit ball of the
stable norm.

2. Unit balls and coorientations

For the whole section we fix a surface Σ of genus at least 1 and a divide γ on it. The norm xγ
defined in the previous section has a very peculiar property: it takes integral values on integral
classes. This property is shared for example by the `1− and `∞-norms on Rd, and their unit balls
are polyhedral. Moreover all faces of these unit balls are of the form {(x1, . . . , xd) |

∑
xiyi = 1} for

some (y1, . . . yd) ∈ Zd. This is not a coincidence.

Theorem 10 (Thm 2 of [Thu86]). If N is a seminorm on Rd taking integral values on Zd, then
there is a finite subset F of Zd such that N(x) = max

y∈F
〈x, y〉 for all x in Rd.
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Figure 3. A torus with a collection γ (black) made of four curves, two vertical and two
horizontal. The curve α (red and bold) intersects γ in 10 points. It is the best for a curve
whose homology class is (4, 1). The norm xγ is actually given by xγ((p, q)) = 2|p| + 2|q|
in the canonical coordinates. The unit balls Bxγ (bold) and B∗xγ (dotted) are shown on the
right. The faces of Bxγ are defined by integral equations while the vertices of B∗xγ belong
to Z2, as predicted by Thurston’s result.

Let us recall that a norm N on a vector space induces a dual norm N∗ on the dual by N∗(y) =

maxx∈B〈x, y〉 where B denotes the unit ball of N. Thurston’s result can be restated by saying that
the unit ball of the dual norm is the convex hull of finitely many integral points.

In our context, denote by x∗γ the norm on H1(Σ;R)∗ ' H1(Σ;R) dual to xγ, by Bxγ the unit ball
of xγ, and by B∗xγ the unit ball of x∗γ. A direct consequence of Theorem 10 is

Corollary 11 (see Figure 3). For Σ a compact surface and γ a divide on it, the unit ball B∗xγ is the
convex hull in H1(Σ;R) of finitely many points that belong to H1(Σ;Z).

A natural question is whether the vertices of B∗xγ (or equivalently the faces of Bxγ) have a
nice interpretation. For example in the context of the Thurston norm, the vertices correspond
to the Euler classes of certain taut foliations (Gabai, see [Yaz16, Thm 3.3]), or of certain vec-
tor fields [Fri79, Mos92, Cal06]. Here we also have such an interpretation in terms of Eulerian
coorientations (Theorem B), and it is the goal of this section to prove it.

2.a. Coorientations and signed intersections. Recall that the divide γ is assumed to be self-
transversely immersed with only double points. We denote by V(γ) the set of double points, that
we call vertices of γ. Consequently we denote by E(γ) the set of connected components of γ\V(γ),
that we call edges of γ. This turns γ into a graph of degree 4 embedded in Σ.

Definition 12. For e an edge of γ, a coorientation on e is the choice of one of the two possible
ways of crossing e: from left to right, or from right to left. A coorientation on γ is a choice of a
coorientation for every edge in E(γ).

There are 2|E(γ)| coorientations of γ. A coorientation η may be evaluated on an oriented im-
mersed curve α transverse to γ: one counts +1 for every intersection point of α with γ if the
orientation of α coincides with the coorientation of the edge, and −1 if the orientations disagree.
Denoting by η(α) this intersection pairing, one sees that η(α) is an integer satisfying |η(α)| ≤ iγ(α).

2.b. Eulerian coorientations. The question now is whether the above inequality may be turned
into an equality for xγ-minimizing curves, and whether η(α) may depend only on the homology
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class of α so that one can compute η on a single representative. Both questions admit a positive
answer if we restrict to some special coorientations, called Eulerian.

Definition 13. A coorientation on γ is Eulerian (or closed) if it vanishes on boundaries, that is, if
for every region D ⊂ Σ whose boundary is transverse to γ one has η(∂D) = 0. The set of all global
Eulerian coorientations is denoted by EulCo(γ).

The set EulCo(γ) is an affine subspace of {−,+}E(γ). Actually the closing condition is local: for η
to be Eulerian it is enough that around every vertex of γ there are as many positively cooriented
edges than negatively cooriented. Hence, up to rotation, there are only two types (locally, at each
vertex) of Eulerian coorientations:

alternating non-alternating
When one travels straight along γ and encounters a vertex of the first type the coorientation
changes, hence the name. For the second type on the other hand, it is as if the coorientation
does not see the vertex.

Example 14. If [γ]2 ∈ H1(Σ;Z/2Z) is zero (meaning that every closed
curve intersects γ an even number of times), then the regions of Σ \ γ can
be colored in black and white in such a way that adjacent regions have
different colors. In this case we can coorient all edges toward the white
regions. The obtained global coorientation is Eulerian, all double points
being alternating.

Example 15. There always exist global Eulerian coorientations, even
when [γ]2 ∈ H1(Σ;Z/2Z) is not zero. Indeed if the divide γ is the im-
mersion of c curves, it admits at least the 2c Eulerian coorientations ob-
tained by choosing a coorientation for every component and having only
non-alternating vertices.

Lemma 16. If η is an Eulerian coorientation of γ, then for every multi-curve α, the pairing η(α)
depends only of the homology class [α] ∈ H1(Σ;Z).

Proof. If two multi-curves α, α′ are homologous, then their difference bounds a singular subsur-
face in Σ. Definition 13 implies that the pairing of the boundary of the image of a surface with an
Eulerian coorientation is zero. Hence η(α − α′) = 0, so η(α) = η(α′). �

Lemma 16 implies that every Eulerian coorientation η induces a well-defined cohomology
class [η] in H1(Σ;Z). We denote by [EulCo(γ)] the subset of H1(Σ;Z) formed by the classes
of global Eulerian coorientations on γ. Note that the class of an Eulerian coorientation is easily
computed since it is enough to evaluate its pairing with 2g curves that generate the homology of Σ.
Moreover, Eulerian coorientations give lower bounds on xγ:

Lemma 17 (Eulerian orientations are in the dual ball). For every Eulerian coorientation η of γ
and for every a in H1(Σ;Z), we have η(a) ≤ xγ(a).
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Proof. Let α be a curve in a that realizes xγ(a). Then η(α) counts every intersection point of α
and γ with a coefficient ±1, while xγ(a) counts all these intersection points with a coefficient +1,
hence the inequality. �

2.c. Eikonal functions. An Eulerian coorientation is analog to a certain 1-form on the graph dual
to γ in Σ. As such it can be seen as the differential of a certain multi-valued function or, equiva-
lently, as the projection to Σ of the differential of a function defined on the universal cover of Σ.
This approach is useful for constructing Eulerian coorientations with a prescribed cohomology
class, as is needed for proving Theorem B.

We consider for every path α in Σ, the number Lenγ(α) of intersections with γ; this notion
of length determines a (not positive definite) distance dγ on Σ. Two points x, y are neighbors if
dγ(x, y) = 1.

Choose a basepoint p0 ∈ Σ and construct the universal cover Σ̃ of Σ as the set of homotopy
classes x = {α} of curves α that begin at p0 and end at any point p =: π{α}; in particular, let x0 be
the class of the constant curve.

Lift γ to a divide γ̃ in Σ̃. Any closed curve β in Σ based at p0 determines a deck transformation
T{β} : x = {α} ∈ Σ̃ 7→ x′ = {β · α}, where β · α is the concatenation of α after β. The deck
transformation T{β} preserves the distance dγ̃.

An Eulerian coorientation η on M gives rise to a function fη : Σ̃ \ γ̃ → Z by the formula
fη{α} =

∫
α
η consisting in counting with signs the intersection points of α with γ. This function is

eikonal, meaning that | fη(x)− fη(x′)| = 1 whenever dγ(x, x′) = 1 (and also fη(x) = fη(x′) whenever
dγ(x, x′) = 0). It is also [η]-equivariant, meaning that x′ = T{β}x implies fη(x′) − fη(x) = [η]([β]).

Definition 18. A function f defined on a subset D of Σ̃ \ γ̃ is said pre-eikonal if it satisfies
| f (y′) − f (y)| ≤ dγ̃(y′, y) and f (y′) − f (y) ≡ dγ̃(y′, y) mod 2 for every y, y′ ∈ Σ̃.

Observe that a function defined on all of Σ̃ \ γ̃ is eikonal if and only if it is pre-eikonal.

Lemma 19 (Extension). Every pre-eikonal function f : D → Z extends to an eikonal function
f : Σ̃ \ γ̃ → Z.

Proof. (Based on footnote of [Whi34].) To define f (x), we first observe that it must lie in the
interval [ f (y) − dγ̃(x, y), f (y) + dγ̃(x, y)] for every y ∈ D.
So we can define f (x) as the highest common point f (x) :=
miny∈D f (y)+dγ̃(x, y) of these intervals, after checking that
they do have a common point, because they intersect pair-
wise. And indeed they do, for otherwise there would exist
two points y, y′ in S such that f (y) + dγ̃(x, y) < f (y′) −
dγ̃(x, y′), which implies f (y′) − f (y) > dγ̃(x, y) + dγ̃(x, z) ≥
dγ̃(y, y′), a contraction to pre-eikonality.

0 [−1, 1]

2

[−1, 5]

−1[−3, 1]

We claim that the extension f is pre-eikonal (and therefore eikonal, since it is defined in all
of Σ \ γ).

Indeed, to prove that | f (x′) − f (x)| ≤ dγ̃(x, x′), it is enough to check that∣∣∣( f (y) + dγ̃(x′, y)) − ( f (y) + dγ̃(x, y))
∣∣∣ ≤ dγ̃(x, x′)
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for each y, which follows from the triangle inequality in the form |dγ̃(x′, y) − dγ̃(x, y)| ≤ dγ̃(x, x′).
To prove that f (x′) − f (x) ≡ dγ̃(x, x′) modulo 2, we write

f (x′) − f (x) = ( f (y′) + dγ̃(x′, y′)) − ( f (y) + dγ̃(x, y)) for certain y, y′ ∈ D
≡ dγ̃(y, y′) + dγ̃(x′, y′) − dγ̃(x, y) mod 2 since f is pre-eikonal
≡ dγ̃(y, y′) + dγ̃(x′, y′) + dγ̃(x, y) since plus and minus coincide mod 2
≡ dγ̃(x, x′) since homotopic paths have congruent length mod 2. �

Note that a pre-eikonal function admits in general several eikonal extensions. The one we
picked in the proof is the highest one. It has the advantage of admitting a simple definition.

2.d. Proof of Theorem B. By Lemma 17, for every Eulerian coorientation η, the class [η] belongs
to B∗xγ , so we have [EulCo(γ)] ⊂ B∗xγ . Conversely, by Thurston’s Theorem, extremal points of B∗xγ
belong to H1(Σ;Z). Therefore it is enough to show that for every integer point n in the closed
ball B∗xγ ⊂ H1(Σ;R) that is congruent to [γ]2 mod 2 there exists an Eulerian coorientation whose
cohomology class is n. This is the content of Lemma 22 below.

Choose a basepoint p0 in Σ̃ \ γ̃. Denote by D its orbit under the deck action. For every closed
curve α based at p0 and for y = {α} ∈ D we set fn(y) := n([α]).

Lemma 20. The function fn : D→ Z is a n-equivariant pre-eikonal function.

Proof. Let y, y′ be two points in D that we write as y = {α} and y′ = T{β}(y) = {β·α} for some closed
curves α, β based at p0. By definition we have fn(y′) − fn(y) = n([β · α]) − n([α]) = n([β]), so fn is
n-equivariant. Furthermore, if we choose β in the form β = α · β′ ·α−1 with β′ of minimum length,
that is, Lenγ(β′) = dγ̃(y, y′), we see that | fn(y′) − fn(y)| = |n([β′])| ≤ Lenγ̃(β′) = dγ̃(y, y′). Finally
we have fn(y) − fn(y′) = n([β′]) ≡ Lenγ(β′) = dγ̃(y′, y) mod 2. Therefore fn is pre-eikonal. �

By the Extension Lemma 19, we can extend fn to an eikonal function fn. We chose fn as in the
proof, namely by the formula fn(x) = miny∈D fn(y) + dγ̃(x, y).

Lemma 21. The function fn is n-equivariant.

Proof. If x = {α} and x′ = T{β}(x) = {β ·α}, then to prove that fn(x′)− fn(x) = n([c]) we just need to
observe that the function fn : D→ Z, as seen from x′, looks the same, but n([β]) units higher, than
as seen from x. More precisely, the contribution f (y) + dγ̃(x, y) of each y = {α} ∈ D to the formula
fn(x) = miny∈D f (y)+dγ̃(x, y) is n([β]) units less than the contribution fn(y′)+d(x′, y′) of its image
y′ = T{β}(y) to the formula fn(x′) = miny′∈D fn(y′) + d(x′, y′), because fn(y′) − fn(y) = n([β]) and
dγ̃(x′, y′) = dγ̃(x, y). �

Lemma 22. There is a unique Eulerian coorientation η on γ whose lift η̃ satisfies
∫

b η̃ = fn(x′) −
fn(x) whenever x = {α} and x′ = {β · α}. This η satisfies [η] = n.

Proof. Since fn is an eikonal function, there exists a unique coorientation η̃ of γ̃ whose integral
on each path equals the variation of η̃. To prove that it descends to a coorientation η of γ, we only
need to check that it is invariant by deck transformations. Indeed if x and z are neighbors, and
x′, z′ are the respective images via a deck transformation T{β}, then η̃(x′, z′) = fn(z′) − fn(x′) =

( fn(z) + n([β])) − ( fn(x) + n([β])) = fn(z) − fn(x) = η̃(x, z), as required. Finally, to see that [η] = n,
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note that if β is a closed loop in Σ based at a point p, and α is a curve from p0 to p, then both the
startpoint x0 and the endpoint x = T{α·β·α−1}(x0) of the loop α · β · α−1 are in D, and we have∫

β
η =

∫
α·β·α−1

η = fn(T{α·β·α−1}x0) − fn(x0) = n([α · β · α−1]) = n([β]).
�

Remark 23. The fact that the unit ball has finitely many faces and that its faces are given by
Eulerian coorientations is related to Dylan Thurston’s Smoothing Lemma [Thu]. Indeed Eulerian
coorientations can be smoothed (in a non-unique way if the coorientation has alternating double
points) without changing their algebraic intersection with other transverse curves. In particular
extremal coorientations yield smoothings of the original collection.

3. Birkhoff cross sections with antithetic boundary for the geodesic flow

In this part, we make an additional assumption: now Σ denotes a Riemann surface with strictly
negative curvature. The divide γ now consists of finitely many periodic geodesics on Σ.

In this setting, the geodesic flow (ϕt
geod)t∈R on the unit tangent bundle T1Σ is the flow whose

orbits are lifts of geodesics. Namely for g a geodesic parametrized at speed one, the orbit of ϕgeod

going though the point (g(0), ġ(0)) ∈ T1Σ is ϕt
geod((g(0), ġ(0)) = (g(t), ġ(t)). For every oriented

periodic geodesic g on Σ, there is one periodic orbit of ϕgeod corresponding to the oriented lift of g
and denoted by ~g. If g now denotes an unoriented geodesic on Σ, there are two associated periodic
orbits of ϕgeod, one for each orientation. We denote by

↔
g the union of these two periodic orbits,

it is an oriented link in T1Σ that is invariant under the involution (p, v) 7→ (p,−v). A link of the
form

↔
g1 ∪ · · · ∪

↔
g k is called an antithetic link6.

Let us recall from the introduction that, given a complete flow (φt)t∈R, a compact surface S with
boundary is transverse to φt if its interior is transverse to the orbits of the flow and its boundary
is the union of finitely many periodic orbits7. A Birkhoff cross section for φt is then a transverse
surface S that intersects every orbit of φt. A small analysis and a compactness argument show
that around the boundary S necessarily looks like a helix, so that the first-return time on int(S ) is
bounded.

In this section, we give a construction that associates to every Eulerian coorientation a surface
transverse to the geodesic flow (3.a). Then we recall some facts on the existence of global sec-
tions for vector fields (3.b), before making some elementary algebraic topology for describing
homology classes of surfaces with boundary (3.c). Finally we put pieces together to prove that the
construction actually exhausts all possible surfaces, thus proving Theorems C and D (3.d).

3.a. Constructions of Birkhoff cross sections with antithetic boundary. We now explain how
to associate to every Eulerian coorientation of γ a surface bounded by ↔

γ and transverse to ϕgeod,
thus proving the first part of Theorem C.

From now on we fix a global coorientation η (not yet Eulerian) of γ. For every edge e of γ (i.e.
segment between two double points), we consider the set Re,η of those tangent vectors based on e
and pairing positively with η. This is a rectangle in T1Σ of the form e × [−π, π] (see Figure 4).
Is is bounded by the two lifts of e in T1Σ (called the horizontal part of ∂Re,η) and two halves of

6This term was suggested by Bruce Bartlett.
7Often in the literature a transverse surface is only defined locally. The condition we add here on the boundary is

not standard. However we keep the name for avoiding a heavier expression.
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Figure 4. Bottom: an edge e of γ and a coorientation η on it. Top: the corresponding
rectangle Re,η in T1Σ. The dotted lines represent the fibers of some points of Σ, that is,
each point on these lines represent a unit tangent vector to Σ. Since the fibers are ac-
tually circles, the top and bottom extremities of the dotted lines should be glued. Re,η

is transverse to ϕgeod and the induced coorientation is shown in red. The induced orien-
tation of the horizontal boundary of Re,η (red) is opposed to the orientation of the flow
(black). Thus the surfaces we will construct are Birkhoff cross sections whose boundary
components have negative multiplicity.

the fibers of the extremities of e (called the vertical part of ∂Re,η). Note the interior of Re,η is
transverse to the geodesic flow ϕgeod while the horizontal part of ∂Re,η is tangent to it. We then
orient Re,η so that ϕgeod intersects it positively. One checks that the induced orientation on ∂Re,η is
opposite to the one given by ϕgeod.

Consider now the 2-dimensional complex S ×(η) that is the union of the rectangles Re,η for all
edges e of γ.

Lemma 24. The 2-complex S ×(η) described above has boundary −↔γ if and only if the coorienta-
tion η is Eulerian.

Proof. Since S ×(η) is the union of one rectangle per edge of γ, the horizontal boundary of S ×(η)
is always in ↔

γ. Since the orientation is opposite to the geodesic flow, it is actually −↔γ.
What we have to check is that the vertical boundary is empty if and only if η is Eulerian. At ev-

ery double point v of γ there are four incident rectangles, corresponding to the four adjacent edges.
Now the vertical boundary of a rectangle Re,η is oriented upwards (that is, trigonometrically) at the
right extremity of e (when cooriented by η) and downwards at the left extremity. Then the vertical
boundary in a vertex of γ is empty if only if two adjacent edges are cooriented in a direction, and
two others in the opposite direction: this means that η is Eulerian around v. Conversely, if η is
Eulerian, then up to rotation there are two local configurations around v (that we called alternating
and non-alternating), and one checks that in both cases, the vertical boundary is empty (see the
left parts of Figures 5 and 6). �
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Figure 5. On the left, the complex S ×(η) around the fiber of an alternating double point
of γ. Every point of the fiber of v is adjacent to exactly two rectangles. On the right the
surface SBB(η) is obtained by smoothing S ×(η).

When η is Eulerian, the complex S ×(η) is not a topological surface if η has some non-alternating
points: as depicted on Figure 6, there are edges adjacent to four faces. But it is the only obstruc-
tion and we can desingularize such segments. Also if we want a smooth surface, we have to
smooth S ×(η) is a neighborhood of the fibers of the double points. In this way, we obtain a smooth
surface, transverse to ϕgeod.

Definition 25. For η an Eulerian coorientation, the associated BB-surface is the surface SBB(η)
obtained from S ×(η) by desingularizing and smoothing the fibers of the double points of γ (see the
right parts of Figures 5 and 6).

For example, the BB-surface associated to a Birkhoff coorientation (Example 14) is isotopic to
the construction suggested by Birkhoff [Bir17] and popularized by Fried [Fri83]. Also the BB-
surface associated to a Brunella coorientation (Example 15) has been introduced by Brunella [Bru94,
Description 2].

3.b. Asymptotic cycles and existence of sections. The question whether a given vector field
admits a global section (i.e., with empty boundary) has been given a very satisfactory answer by
Schwartzman and Fuller [Sch57, Ful65], then expanded by Fried [Fri82]. A very elegant proof in
terms of foliated currents was also provided by Sullivan [Sul76].
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Figure 6. On the left, the complex S ×(η) around the fiber of a non-alternating double
point of γ. Every point of the fiber of v is adjacent to an even number of rectangles. On
the right the surface SBB(η) is obtained by desingularizing S ×(η) on the portion of the
fiber where four rectangles meet.

A preliminary remark: if two surfaces S1 and S2 in a manifold M are global sections to a flow φ
and they are homologous, then they are isotopic, and the isotopy is realized by the flow. Indeed8

one can consider the infinite cyclic covering of M̂ → M associated to the morphism π1(M) → Z
given by the intersection with [S1] = [S2]. Then S1 and S2 lift into Z disjoint copies tmŜ1 and tnŜ2
in M̂, all transverse to the lift of the flow. Now following the flow starting from Ŝ1, one reaches
Ŝ2, so we have a surjective map Ŝ1 → Ŝ2 of local degree 1, and since Ŝ1 is transverse to the flow it
is of total degree 1. Similarly we have a surjection Ŝ2 → Ŝ1 of local degree 1. By composing the
two, we get of surjection Ŝ1 → Ŝ1 of total degree 1, hence a bijection. Therefore the maps Ŝ1 → Ŝ2
and Ŝ2 → Ŝ1 are actually bijections, and the flow hence induces an isotopy Ŝ1 → Ŝ2. Projecting
back in M, we obtained the desired isotopy S1 → S2.

For X a vector field in a compact manifold M, we denote by kX(p, t) a closed curve obtained
by concatenating the piece of orbit φ[0,t](p) starting at p of length t with an arc connecting φt(p)
to φ0(p) of bounded length. The class [kX(p, t)] in H1(M;Z) then depends on the choice of the
closing segment, but only in a bounded way, so that the limit limt→∞

1
t [kX(p, t)], if it exists, does

not depend on this choice. An asymptotic cycle of X is then the limit of a sequence of the
form { 1

tn
[kX(pn, tn)] | pn ∈ M, tn → ∞} in H1(M;R). The set of asymptotic cycles of X is denoted

bySchw(X). Sullivan [Sul76] reinterpreted it by showing that every X-invariant measure µ induces
a foliated cycle cµ that is actually a positive combination of asymptotic cycles.

8This mimics the folklore argument in knot theory that the fiber of a fibration minimizes the genus, but it is not so
easy to find a reference for this statement.
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Theorem 26. [Sch57, Ful65] A vector field X on a closed M admits a global section whose homol-
ogy class is σ ∈ H2(M, ∂M;Z) if and only σ intersects positively every asymptotic cycle, namely
for every c ∈ Schw(X) one has 〈σ, c〉 > 0.

This theorem is beautiful, but unfortunately, for many vector fields X, the point 0 belongs
to Conv(Schw(X)), so that X admits no global section at all. This is where Birkhoff cross sections
come in.

3.c. Classes of surfaces with given boundary. Now we work in our restricted setting: Σ is a
negatively curved surface, γ is a finite collection of periodic geodesics and ↔

γ denotes the antithetic
lift of γ. In order to apply Theorem 26 for finding Birkhoff cross sections, we need to work in
the complement T1Σ \

↔
γ and in particular to determine the space H2(T1Σ,

↔
γ;Z). In this section

we show that the homology classes of surfaces bounded by −↔γ form an affine space and we give a
canonical origin to this space.

Lemma 27. The sequence 0 → H2(T1Σ;Z)
i
−→ H2(T1Σ,

↔
γ;Z)

∂
−→ H1(↔γ;Z), where the first map is

the inclusion map and the second is the boundary map, is exact.9

Proof. This is just a part of the long exact sequence associated to the pair (T1Σ,
↔
γ), see [Hat02,

Thm 2.16], plus the remark that H2(↔γ;Z) is zero. �

The homology classes of those surfaces whose boundary is −↔γ correspond to the preimages
under ∂ of the point (−1,−1, . . . ,−1) ∈ H1(↔γ;Z) ' Z2|γ|. Hence they form an affine space directed
by H2(T1Σ;Z). Indeed, given two surfaces with the same boundary, their difference induces a
class in H2(T1Σ;Z). Now using the fact that T1Σ is a circle bundle with non-zero Euler class, we
get H2(T1Σ;Z) ' H1(Σ;Z): a non-trivial class in H2(T1Σ;Z) can be represented by the set of the
fibers over a cycle in H1(Σ;Z).

From the previous discussion we deduce that if we are given an explicit surface S0 bounded
by −↔γ, the classes of the other surfaces bounded by −↔γ differ from [S0] by a class in H1(Σ). In our
context, there is a natural choice of such an origin, for which the computation of the intersection
numbers with asymptotic cycles of the geodesic flow will be easy. We denote by S ×± the rational
chain in C2(T1Σ,

↔
γ;Q) that is half the sum of all rectangles of the form Re,η (see Figure 7) and

by σ± its homology class in H2(T1Σ,
↔
γ;Q):

S ×± :=
1
2

∑
e∈γ,ηe=±

Re,ηe , σ± := [S ×±].

In other words, we consider the set of all tangent vectors base at points of γ. Remember that every
rectangle is cooriented by the geodesic flow, hence oriented. Therefore, S ×± is also oriented. Its
boundary is then exactly −↔γ (thanks to the 1

2 factor). The chain S ×± is not a surface since the fibers
of the double points of γ are singular. As it is rational the class σ± might not be realized by a
surface, but 2σ± is always an integer class.10

9An erroneous version of this statement is in [Fri82, Lemma 6], where it is claimed that the boundary map is
surjective and admits a section. It is not true in general, unless the manifold is a homology sphere.

10Actually, σ± is realized by a surface if and only if [γ]2, the class of γ with Z/2Z-coefficients, is 0. In this case, the
homology class of Birkhoff’s coorientation ηB (Example 14) is 0, and S BB(ηB) lies in the class σ±. Also the class σ± is
equal to 1

2 [SBB(η) + SBB(−η)] for every Eulerian η. Hence it is always realized as the average of two surfaces without
any assumption on [γ]2.
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Figure 7. The 2-chain S ×± is half of the sum of all rectangles Re,ηe . It is cooriented by
the geodesic flow, hence oriented (in red). Its boundary, taking orientations into account,
is then −

↔
γ .

Lemma 28. For α a collection of oriented periodic geodesics on Σ, none of which is a component
of γ, the algebraic intersection 〈σ±, ~α〉 is equal to + 1

2 |{α ∩ γ}|.

This lemma appears in a different form in [DIT17] where it is used to prove that the linking
number of two collections

↔
γ1,

↔
γ2 in T1Σ is actually equal to |{γ1 ∩ γ2}|.

Proof. Since S ×± is positively transverse to the geodesic flow, all intersection points of ~α with S ×±
count positively. Since every rectangle has coefficient 1

2 in S ×±, every intersection point contributes
for +1

2 to the algebraic intersection. Finally ~α intersects S ×± exactly in the fiber of the intersection
points of α and γ. �

The connection with intersection norms is now straightforward:

Corollary 29. For α a collection of oriented periodic geodesics on Σ, none of which is a compo-
nent of γ, the intersection 〈σ±, ~α〉 is at least equal to xγ([α]), with equality if and only if α is a
xγ-minimizing collection of geodesics.
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3.d. Proofs of Theorems C and D. Denote by Schw↔γ ⊂ H1(T1Σ \
↔
γ;R) the set of all asymptotic

cycles of the geodesic flow ϕgeod restricted to T1Σ \
↔
γ. Also denote by π∗ the canonical projection

from H2(T1Σ;R) to H1(Σ;R). The next statement is the key statement connecting Birkhoff sections
and intersection norms.

Lemma 30. A class σ ∈ H2(T1Σ,
↔
γ;R) intersects positively every element of Schw↔γ if and only if

the class π∗(σ − σ±) ∈ H1(Σ;R) lies in the interior of 1
2 B∗xγ .

Proof. By the shadowing property for pseudo-Anosov flows, the projectivization of Schw↔γ is the
convex hull of the cycles given by periodic orbits. Hence it is enough to estimate the intersection
of σ with all periodic orbits of ϕgeod.

We use the bracket to denote the intersection, and the index reminds the space where the objects
live. For every periodic orbit ~α of ϕgeod, by Lemma 28, we have〈

σ, ~α
〉

T1Σ\
↔
γ =

〈
σ − σ±, ~α

〉
T1Σ\

↔
γ +

〈
σ±, ~α

〉
T1Σ\

↔
γ

=
〈
σ − σ±, ~α

〉
T1Σ\

↔
γ +

1
2
|{α ∩ γ}|

= 〈π∗(σ − σ±), α〉Σ +
1
2
|{α ∩ γ}|.

Hence
〈
σ, ~α

〉
T1Σ\

↔
γ is positive if and only if − 〈π∗(σ − σ±), α〉Σ is smaller than 1

2 |{α ∩ γ}|.
Now the term − 〈π(σ − σ±), α〉Σ depends only on the class [α] ∈ H1(Σ;Z), while the other

term 1
2 |{α ∩ γ}| is larger that 1

2 xγ([α]), with equality if α is xγ-minimizing (Corollary 29).
We now treat separately the cases [α] , 0 and [α] = 0 in H1(Σ;Z).
Since there is a xγ-minimizing geodesic in every non-zero homology class, the inequality

− 〈π∗(σ − σ±), α〉Σ < 1
2 |{α ∩ γ}| is true for all non null-homologous geodesics α if and only if

the inequality − 〈π∗(σ − σ±), a〉Σ <
1
2 xγ(a) is true for every non-zero homology class.

If α is null-homologous and γ is filling (meaning that the complement Σ \ γ is a union of
topological discs), we have 1

2 |{α ∩ γ}| > 0 and − 〈π∗(σ − σ±), α〉Σ = 0. If α is null-homologous
and γ is not filling, all terms equal 0, so that the orbit ~α does not intersect σ. However, in this case,
the interior of B∗xγ is empty, so the statement is true.

Summarizing the two previous paragraphs, we find that, if γ is filling, the class σ intersects
positively every element ofSchw↔γ if and only if for every class a ∈ H1(Σ;Z) we have the inequality
− 〈π∗(σ − σ±), a〉Σ < 1

2 xγ(a), which means exactly that the point −π∗(σ − σ±) belongs to 1
2 B∗xγ .

Since the latter is symmetric about the origin, this amounts to π∗(σ − σ±) belonging to 1
2 B∗xγ . �

As a byproduct of the proof, we obtain that a class σ ∈ H2(T1Σ,
↔
γ;R) intersects non-negatively

every asymptotic cycle if and only if π∗(σ − σ±) ∈ H1(Σ;R) lies in the closed unit ball 1
2 B∗xγ .

Proof of Theorem C. For η an Eulerian coorientation, we consider the surface SBB(η) (Defini-
tion 25). By construction it is transverse to the geodesic flow. One easily checks that every
rectangle of the form Re,η contributes to −1 to the Euler characteristics, hence χ(SBB(η)) is −|E(γ)|.
Since γ is a graph of degree 4, one has |E(γ)| = 2|V(γ)|, so that χ(SBB(η)) = −2|V(γ)|.

Now if η1 and η2 are cohomologous, the class [SBB(η1) − SBB(η2)] ∈ H2(T1Σ;Z) projects by π
onto [η1 − η2] = 0. Since π∗ is actually an isomorphism we have [SBB(η1) − SBB(η2)] = 0, which
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in turn implies [SBB(η1)] = [SBB(η2)] in H2(T1Σ,
↔
γ;Z). Now since SBB(η1) and SBB(η2) are both

transverse to ϕgeod and homologous, the flow actually realizes an isotopy between them. �

Proof of Theorem D. Lemma 27 and the paragraph after imply that real homology classes of sur-
faces bounded by−↔γ form an affine space directed by H2(T1Σ;R). The classσ± defined in 3.c gives
a canonical origin to this space. It is a half-integer class, and its double 2σ± is congruent to [γ]2
mod 2. Therefore the doubles of all integer classes correspond to the sublattice of H2(T1Σ;Z) of
those points congruent to [γ]2 mod 2.

Now we have to determine which of these integer classes yield Birkhoff cross sections. By
Schwartzman-Fuller Theorem 26, a class σ contains a Birkhoff cross section if and only if it
intersects positively every asymptotic cycles. By Lemma 30 this means that the difference π∗(σ −
σ±) lies inside 1

2 B∗xγ , or equivalently that 2π∗(σ − σ±) lies inside B∗xγ .
Finally surfaces that are transverse to ϕgeod correspond to homology classes that intersects non-

negatively every asymptotic cycle, allowing certain intersection nuumbers to be zero. This means
that the boundary of B∗xγ is now authorized. �

4. Extension to orientable 2-orbifolds

We explain here how the results extend to 2-dimensional orbifolds. Actually the only point that
is not straightforward is Theorem D which requires a new argument.

Definition 31 (chap.13 of [Thu80]). A Riemannian orientable 2-dimensional orbifold O is
given by an orientable topological surface ΣO together with an atlas (Uα, φα)α∈A of charts of the
form φα : Uα → Dα/(Z/kαZ), with Dα a 2-dimensional Riemannian disc on which Z/kαZ acts by
rotations, and such that the chart changes φα ◦ φ−1

β are isometries.

Actually the orbifolds to which our theorems extend are the hyperbolic ones. Such a 2-orbifold
is always good in the sense of Thurston, namely it is a quotient of a hyperbolic surface by a finite
automorphism group.

For our purpose we define the first homology group H1(O;R) to be simply H1(ΣO;R). The
definition of intersection norms then extend directly and Theorems A and B hold.

We now turn to Theorems C and D. First we have to define unit tangent bundles to orbifolds
and geodesic flows. If D is a Riemannian disc on which Z/kZ acts by rotation (with a fixed point),
then Z/kZ also acts on the unit tanget bundle T1D. The action on T1D is free, since the vectors
tangent to the fixed point are rotated. Hence the quotient T1D/(Z/kZ) is a 3-manifold (actually it
is a solid torus).

Definition 32. Given a Riemannian orientable 2-orbifold O = (ΣO, (Uα, φα)α∈A), its unit tangent
bundle is the 3-manifold T1O defined by the atlas (Ûα, φ̂α)α∈A, where Ûα = T1Uα and φ̂α(x, v) =

(φα(x), d(φα)x(v)). It is equipped with a canonical projection π : T1O → O.
If O is of the form Σ/Γ for some hyperbolic surface Σ, then T1O is simply the quotient (T1Σ)/Γ.
The geodesic flow on T1O is defined as in the non-singular case by ϕt

geod(γ(0), γ̇(0)) = (γ(t), γ̇(t)),
where γ is any geodesic travelled at speed 1.

With these definitions, the constructions of Section 3.a (the BB-surface SBB(η) associated to an
Eulerian coorientation) can be transposed and Lemmas 24, 27, and 28 remain true.

Now, for O a hyperbolic 2-orbifold, the unit tangent bundle T1O is a 3-manifold, and we have
H2(T1O;R) ' H1(O;R). Indeed closed curves in ΣO lift by π−1 to closed surfaces in T1O. The fact
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that the unit tangent to a conic disc D/(Z/kZ) is a torus whose core is the singular fiber implies
that cohomologous curves lift to cohomologous surfaces, so that π−1 induces a well-defined map
π−1
∗ : H1(O;R)→ H2(T1O;R). The orbifold Euler characteristics ofO is negative by hyperbolicity,

so that the Euler number of T1O (as a Seifert fibered space) is also negative, hence the map π−1
∗ is

an isomorphism.
Now Corollary 29 holds, but Lemma 30 needs to be adapted. Firstly remark that if ΣO is a

homology sphere, xγ is the zero-function, so there is no possible interesting version of Lemma 30
in this case. Secondly, if ΣO is not a homology sphere, Lemma 30 holds, but one argument needs
to be developed, namely:

Lemma 33. For O a Riemannian orientable 2-orbifold and γ a geodesic divide on O, for every
non-zero homology class a in H2(O;R), there is a xγ-minimizing geodesic in a.

Proof. Let β we a xγ-minimizing curve such that [β] = a. As in the case of a standard surface
we want to strenghten β to make it geodesic without changing the geometric intersection with γ.
Far from the cone points, one can perform isotopies that shorten β with respect to the hyperbolic
metric . Since γ is geodesic, these isotopies cannot increase the number of intersection (that is, no
Reidemeister-II move is involved).

Around a cone point, one can work in a local cone chart. This amounts to work on a standard
disc where everything in invariant under a rotation. Then one can also perform length-decreasing
isotopies in an equivariant way, and this does not increase the number of intersection points with γ.

�

Theorem C holds with no modification in the proof, and Theorem D has to be changed into
Theorem E in order to treat the case of an orbifold whose underlying surface is a sphere.

Proof of Theorem E. Suppose that ΣO is a sphere. Then T1ΣO is a rational homology sphere (in
this case, H1(T1Σ00;Z) is finite, but not reduced to the trivial group, unless ΣO is a sphere with
three cone points of respective orders 2, 3, and 7). If γ is filling, then the class σ± intersects every
asymptotic cycle, so it contains a Birkhoff section. Since H2(T1Σ00;Z) is trivial, all Birkhoff

sections are homologous, hence isotopic relatively to their boundary.
If γ is not filling, then there exists a geodesic α not intersecting γ on ΣO. Both its oriented lifts do

not intersect S ×±, hence there is an asymptotic cycle whose algebraic intersection with σ± is zero.
Hence the class σ± contains no Birkhoff section. Since it is the unique class with boundary −↔γ,
there is no Birkhoff section bounded by −↔γ at all.

Finally if ΣO is not a sphere and γ is filling, the norm xγ is non-degenerate, and the proof of
Theorem D translates directly. �

5. Questions

On intersection norms. If Σ is a flat torus, then the minimal intersection is always realized by
geodesics, which are unique in their homology class. Hence if the divide γ is the union of k
geodesics γ1, . . . , γk, then iγ(α) =

∑k
i=1 iγi(α). This implies that the dual ball B∗γ coincides with

the Minkowski sum B∗γ1
+ · · · + B∗γk

. Since the segment [−1, 1] × {0} ⊂ R2 is the dual unit ball B∗xγ
for γ the vertical circle on the torus, every segment containing 0 in the middle is the dual unit
ball of some closed circle on the torus. Therefore every convex polygon in R2 whose vertices
are integral and congruent mod 2 is of the form B∗xγ for some γ. This was already remarked by
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Thurston [Thu86] and by Schrijver [Sch93]. In higher dimension the situation is probably more
intricate.

Question 34. Which polyhedra of R2g with integer vertices can be realized as the dual unit ball B∗xγ
for some γ in Σg?

As we finish the paper, a partial answer is given by Abdoul Karim Sane [San18] who proves
that some polyhedra in R4 cannot be dual unit ball of any intersection norm on a genus 2-surface.

Also, if Σ is a torus and γ is a union of geodesics, then the above remarks imply that the number
of self-intersection points of γ is exactly 1/4 of the area of B∗xγ (check on Figure 1). Is there an
analog statement in higher genus?

Question 35. Which information concerning γ can be read on B∗xγ? Is the number of self-
intersection points of γ a certain function defined on B∗xγ?

This information is interesting since the this number is exactly the opposite of the Euler char-
acteristic of every Birkhoff cross section bounded by ↔

γ. Note that the number of self-intersection
points is homogenous of degree 2, so we should look for degree 2 functions on polyhedra in R2g:
does it correspond to some symplectic capacity?

Motivated by our application we only defined the intersection norm for a collection of immersed
curves, but one can directly extend it for an arbitrary embedded graph. One can wonder which
properties extend to this case and which information on the embedded graphs are encoding in this
norm. For example when the graph is Eulerian (i.e., all vertices have even degree) the connection
with Eulerian coorientations remains.

On Birkhoff cross sections. Our constructions and our classification result deal only with Birkhoff

cross sections bounded by an antithetic collection of periodic orbits of the geodesic flow, that is,
invariant under the involution (p, v) 7→ (p,−v). However the only restriction a priori for being the
boundary of a Birkhoff cross section is to be a boundary, that is, to be null-homologous. Our results
here say nothing about the classification, or even the existence, of Birkhoff cross sections with
arbitrary null-homologous boundary. In this case, the theory of Schwartzman-Fuller-Thurston-
Fried and the remarks of Sections 3.b and 3.c still apply, so that these sections still correspond to
the point inside a certain polytope in H1(Σ;R). However we have no analog for the coorientations
and the explicit constructions derived from them.

Question 36. Is there a natural generalization of the polytope B∗xγ to non-antithetic finite collec-
tions ~γ of closed orbits of the geodesic flow ϕgeod, so that integer points in this polytope classify
surfaces bounded by ~γ and transverse to ϕgeod?

In the case of the flat torus, this question is answered in [Deh15a, Thm 3.12] where a polygon P~γ
classifying transverse surfaces bounded by ~γ is defined for every null-homologous collection ~γ.

What would probably unlock the situation in the higher genus case would be to have, for every
null-homologous collection ~γ, one explicit surface bounded by ~γ (not necessarily transverse), that
is, an analog of σ± when ~γ is not antithetic. Such an explicit point allows to compute its intersec-
tion with every other periodic orbit ~α of ϕgeod. These intersection numbers are all we need in order
to describe explicitly the asymptotic directions of ϕgeod in T1Σ \ ~γ. Generalising the constructions
of [Deh15b] is a possibility here.

More generally, one can wonder whether there exists a generalization to all flows of the inter-
section norm xγ in the following sense:
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Question 37. For every 3-dimensional flow X, is there an object that describes all isotopy classes
of Birkhoff cross sections?

A starting point would be to try with an Anosov flow that is not the geodesic flow, and see
whether Gauss linking forms [Ghy09] could play this role.
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