Mixedsde: a R package to fit mixed stochastic differential equations - Archive ouverte HAL
Article Dans Une Revue The R Journal Année : 2019

Mixedsde: a R package to fit mixed stochastic differential equations

Résumé

Stochastic differential equations (SDEs) are useful to model continuous stochastic processes. When (independent) repeated temporal data are available, variability between the trajectories can be modeled by introducing random effects in the drift of the SDEs. These models are useful to analyse neuronal data, crack length data, pharmacokinetics, financial data, to cite some applications among other. The R package focuses on the estimation of SDEs with linear random effects in the drift. The goal is to estimate the common density of the random effects from repeated discrete observations of the SDE. The package mixedsde proposes three estimation methods: a Bayesian parametric, a frequentist parametric and a frequentist nonparametric method. The three procedures are described as well as the main functions of the package. Illustrations are presented on simulated and real data.
Fichier principal
Vignette du fichier
article_mixedsde21042016.pdf (1.39 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01305574 , version 1 (21-04-2016)

Identifiants

Citer

Charlotte Dion, Simone Hermann, Adeline Samson. Mixedsde: a R package to fit mixed stochastic differential equations. The R Journal, 2019, 11 (1), ⟨10.32614/RJ-2019-009⟩. ⟨hal-01305574⟩
839 Consultations
783 Téléchargements

Altmetric

Partager

More