
HAL Id: hal-01305574
https://hal.science/hal-01305574v1

Submitted on 21 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixedsde: a R package to fit mixed stochastic
differential equations

Charlotte Dion, Simone Hermann, Adeline Samson

To cite this version:
Charlotte Dion, Simone Hermann, Adeline Samson. Mixedsde: a R package to fit mixed stochastic
differential equations. The R Journal, 2019, 11 (1), �10.32614/RJ-2019-009�. �hal-01305574�

https://hal.science/hal-01305574v1
https://hal.archives-ouvertes.fr


Mixedsde: an R package to fit mixed stochastic
differential equations

Charlotte Dion(1),(2), Simone Hermann(3), Adeline Samson(1)

(1) UMR CNRS 5224, Laboratoire LJK, Université Grenoble Alpes, France
(2) UMR CNRS 8145, Laboratoire MAP5, Université Paris Descartes,

Sorbonne Paris Cité, France
(3) TU Dortmund University, Faculty of Statistics, Germany

Abstract

Stochastic differential equations (SDEs) are useful to model continuous stochastic processes.
When (independent) repeated temporal data are available, variability between the trajectories can
be modeled by introducing random effects in the drift of the SDEs. These models are useful to
analyse neuronal data, crack length data, pharmacokinetics, financial data, to cite some applica-
tions among other. The R package focuses on the estimation of SDEs with linear random effects
in the drift. The goal is to estimate the common density of the random effects from repeated
discrete observations of the SDE. The package mixedsde proposes three estimation methods: a
Bayesian parametric, a frequentist parametric and a frequentist nonparametric method. The three
procedures are described as well as the main functions of the package. Illustrations are presented
on simulated and real data.

Keywords: R, simulation, data analysis, nonparametric estimation, parametric estimation, Bayesian
method.

1 Introduction
Continuous stochastic processes are usually observed discretely in time (with equidistant time
points or not) leading to times series, although their intrinsic nature is of continuous time. While
discrete time stochastic models such as auto-regressive models (ARMA, GARCH, ...) have been
widely developed for time series with equidistant times, more and more attention have been fo-
cused on Stochastic Differential Equations (SDEs). Examples of applications where SDEs have
been used include dynamics of thermal systems (Bacher et al., 2011), solar and wind power
forecasting (Iversen et al., 2014), neuronal dynamics (Ditlevsen and Samson, 2014), pharmacoki-
netic/pharmacodynamic (PK/PD) (Hansen et al., 2014), crack growth (Hermann et al., 2016).

Depending on the applications, independent repeated temporal measures might be available.
For examples, drug concentration of several subjects is usually observed in PK; dynamics of several
neurons is measured along time; time to crack lengths can be measured repeatedly in crack growth
study. Each trajectory represents the behaviour of a unit/subject. The functional form is similar
for all the trajectories. Fitting the overall data simultaneously obviously improves the quality
of estimation, but one has to take into account these variabilities between experiments. This is
the typical framework of mixed-effects models where some parameters are considered as random
variables (random effects) and proper to each trajectory. Hence the random effects represent
the particularity of each subject. Some parameters can also be considered as common to all the
trajectories (fixed effects).
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In this work the model of interest is thus a mixed-effects stochastic differential equation
(MSDE), mixed-effects for both fixed and random effects. The mixedsde package has been devel-
oped to estimate the density of the random effects from the discrete observations ofM independent
trajectories of a MSDE. It is available from https://github.com/charlottedion/mixedsde.

More precisely, we focus on MSDE with linear drift. We consider M diffusion processes
(Xj(t), t ≥ 0), j = 1, . . . ,M with dynamics ruled by SDE, for t ∈ [0, T ]{

dXj(t) = (αj − βjXj(t))dt+ σa(Xj(t))dWj(t)

Xj(0) = xj
(1)

where (Wj)1...j...M are M independent Wiener processes, (αj , βj) are two (random) parameters,
σa(Xj(·)) is the diffusion coefficient with a a known function and σ an unknown constant. The
initial condition xj is assumed fixed (and known) in the paper with possibly different values for
each trajectory.

In the package, we restrict the models to the two famous SDEs with linear drift, namely the
Ornstein-Uhlenbeck model (OU) with a(x) = 1 and the Cox-Ingersoll-Ross model (CIR) with
a(x) =

√
x. For the CIR model, we assume that xj > 0, σ > 0, αj > σ2/2 and βj > 0 to ensure

that the process never crosses zero.
The random parameters are denoted φj and belong to Rd with either d = 1 or d = 2:

• (d = 1) φj = αj random and for all j = 1, . . . ,M , βj = β fixed

• (d = 1) φj = βj random and for all j = 1, . . . ,M , αj = α fixed

• (d = 2) φj = (αj , βj) random

The φj ’s are assumed independent and identically distributed (i.i.d.) and independent of the
Wj ’s. The mixedsde package aims at estimating the random effects φj and their distribution

whose density is denoted f , from N discrete observations of the M trajectories (Xj(t))j from
equation (1) at discrete times t0 = 0 < t1 < . . . < tN = T (not necessarily equidistant). To the
best of our knowledge, this is the first package in R language dedicated to the estimation of MSDE.

Estimation procedures for MSDE have been proposed in the non-parametric and the parametric
frameworks, with a frequentist and a Bayesian point of view. The parametric approaches assume
Gaussian random effects φj . Among other references, for parametric maximum likelihood estima-
tion, we can cite Ditlevsen and de Gaetano (2005); Picchini et al. (2010) (Hermite expansion of the
likelihood); Delattre et al. (2013) (explicit integration of the Girsanov likelihood) or Delattre et al.
(2016) (mixture of Gaussian distributions for the random effects); for parametric Bayesian esti-
mation, we can cite Oravecz et al. (2009) (restricted to Ornstein-Uhlenbeck) and Hermann et al.
(2016) (general methodology); for non-parametric estimation, we can cite Comte et al. (2013);
Dion (2014); Dion and Genon-Catalot (2015) (kernel estimator and deconvolution estimators).

Three estimation procedures are implemented in the mixedsde package: a kernel nonparametric
estimator (Dion and Genon-Catalot, 2015), a parametric maximum likelihood estimator (Delattre
et al., 2013) and a parametric Bayesian estimator (Hermann et al., 2016). The parametric frequen-
tist and Bayesian approaches assume the random effects Gaussian. The Bayesian approach seems
the most appropriate method for a small time of observation T and a small number of trajectories
M . The nonparametric approach can be used when no prior idea on the density is available and
when T and M are both large enough. Finally, the parametric frequentist estimation can be used
when data are symmetric with a large number of discrete observations.

This paper reviews in Section 2 the three estimation methods. An overview of the mixedsde
package is given in Section 3 through a description of the main functions and of other related
companion functions. The practical use of this package is illustrated in Section 4 on simulated
data and in Section 5 on one real dataset in neuronal modelling.
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2 Density estimation in mixed stochastic differential models
We briefly recall the methodology of the three estimators implemented in the mixedsde package.
We start with the nonparametric approach, then the frequentist parametric Gaussian method and
finally the Bayesian parametric Gaussian method.

2.1 Nonparametric estimation of the random effects density
The first step of the nonparametric approach is to estimate the random effects. The idea is to
maximize the likelihood of the process Xϕ

j solution of the stochastic differential equation with fixed
ϕ. Assuming continuous observations of (Xj(t), 0 ≤ t ≤ T ), the likelihood function is obtained
with the Girsanov formula:

`T (ϕ) = exp

(∫ T

0

α− βXϕ
j (s)

σ2a2(Xϕ
j (s))

dXj(s)−
1

2

∫ T

0

(α− βXϕ
j (s))2

σ2a2(Xϕ
j (s))

ds

)
.

Maximizing the likelihood yields to the following estimator of φj

Aj := V −1
j Uj (2)

where Uj and Vj are the two sufficient statistics of the model. They are explicit depending on the
form of the random effects:

• αj random and β known

Uj :=

∫ T

0

1

σ2a2(Xj(s))
dXj(s) + β

∫ T

0

Xj(s)

σ2a2(Xj(s))
ds, Vj :=

∫ T

0

1

σ2a2(Xj(s))
ds

• βj random and α known

Uj := −
∫ T

0

Xj(s)

σ2a2(Xj(s))
dXj(s) + α

∫ T

0

Xj(s)

σ2a2(Xj(s))
ds, Vj :=

∫ T

0

Xj(s)
2

σ2a2(Xj(s))
ds

• (αj , βj) random, denote b(x) = (1,−x)t with ut the transposition of vector u. Here Uj is a
column vector with size 2× 1 and Vj = (Vj,k,`)k,`∈{1,2} a 2× 2 symmetric matrix:

Uj :=

∫ T

0

b

σ2
(Xj(s))dXj(s), Vj :=

∫ T

0

b bt

σ2
(Xj(s))ds. (3)

Truncated versions of this estimator have been introduced for theoretical reasons. In the bidi-
mensional case φj = (αj , βj), Dion and Genon-Catalot (2015) propose the following estimator

Âj := Aj1Bj
, Bj := {Vj ≥ κ

√
TI2} = {min(λ1,j , λ2,j) ≥ κ

√
T} (4)

with I2 the 2×2 identity matrix and λi,j , i = 1, 2 the two eigenvalues of the symmetric non negative
matrix Vj , and κ a numerical constant calibrated in practice. In the one-dimensional case φj = βj
with α = 0, Genon-Catalot and Larédo (2016) propose

Âj := Aj1Vj≥κ
√
T (5)

with κ a numerical constant calibrated in practice.
Based on these estimators of the φj ’s, we can proceed to the second step, the estimation of

their density f . Several nonparametric estimators of f have been proposed (see Comte et al., 2013,
for example). In the package mixedsde, we focus on the kernel estimator of f . Let us introduce
the kernel function K : Rd → R, with d = 1, 2 depending on the dimension of φj . We assume K
to be a C2 function satisfying∫

K(u)du = 1, ‖K‖2 =

∫
K2(u)du < +∞,

∫
(∇K(u))2du < +∞
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(with ∇K the gradient of K). A bandwidth h ∈ (R+)d, for d = 1, 2, is used to define the function

Kh(x) =
1

h
K
(x
h

)
, x ∈ Rd.

Note that in the bidimensional case, h = (h1, h2) and the two marginal bandwidths are different.
The nonparametric estimator of the density f of φj is

f̂h(x) =
1

M

M∑
j=1

Kh(x−Aj). (6)

and the estimator ̂̂fh(x) =
1

M

M∑
j=1

Kh(x − Âj) is computed when the truncated estimator Âj is

different than Aj .
In the mixedsde package, Gaussian kernel estimators are implemented with the R-functions

density (available in package stats) when d = 1 and kde2d (available in package MASS) when
d = 2 with an automatic selection of the bandwidth h. Note that when there is only one random
effect, the bandwidth is selected by cross-validation with the argument bw="ucv", or as the default
value given by the rule-of-thumb if the chosen bandwidth is to small. Note that the estimator is
unstable for small variance of the random effects.

It is important to notice that the two random effects are not assumed independent. When
there is only one random effect, the fixed parameter has to be entered by the user.

The computation of Aj = V −1
j Uj does not require the knowledge of σ2 as it appears both

in Uj and Vj . It requires however the evaluation of the two continuous integrals in Uj and Vj
while observing the trajectories (Xj) at discrete times (t0, t1, . . . , tN ). For ∆k = tk+1 − tk, k =

0, . . . , N − 1, the non-stochastic integrals
∫ T

0
g(Xj(s))ds for any function g are approximated by

∫ T

0

g(Xj(s))ds ≈
N−1∑
k=0

g(Xj(tk))∆k.

For the stochastic integrals, we use the following simple discretization∫ T

0

g(Xj(s))dXj(s) ≈
N−1∑
k=0

g(Xj(tk))(Xj(tk+1)− (Xj(tk)))∆k.

2.2 Frequentist parametric estimation approach
In this section and the following one, we assume that the random parameters φj are Gaussian:

• when d = 1, φj ∼ N (µ, ω2) with µ ∈ R
• when d = 2, φj ∼ N (µ,Ω) with µ ∈ R2 and a diagonal covariance matrix Ω = diag(ω2

1 , ω
2
2).

For the bidimensional case d = 2 we estimate by maximum likelihood the parameters θ :=
(µ,Ω). We define the likelihood function assuming first that the trajectories are continuously
observed, similarly to the nonparametric approach (Section 2.1). Thanks to the Girsanov formula,
the likelihood function of the jth trajectory Xj is

L(Xj , θ) =
1√

det(I2 + ΩVj)
exp

[
−1

2
(µ− V −1

j Uj)
′R−1
j (µ− V −1

j Uj)

]
exp

(
1

2
U ′jV

−1
j Uj

)
with R−1

j = (I2 + VjΩ)−1Vj and I2 is the 2× 2 identity matrix.
For the case d = 1, the parameters to estimate are θ := (µ, ω, ψ) where ψ denotes the fixed

effect α or β. We adopt the subscript r for the value of random, equal to 1 or 2, and c for the
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position of the common fixed effect (thus 2 or 1). The likelihood function of the jth trajectory Xj

is

L(Xj , θ) =
1√

1 + ω2Vj,r,r
exp

[
−1

2
Vj,r,r(1 + ω2Vj,r,r)

−1(µ− V −1
j,r,r(Uj,r − ψVj,c,r))

2

]
× exp

(
ψUj,c −

ψ2

2
Vj,c,c

)
exp

(
1

2
(Uj,r − ψVj,r,c)2V −1

j,r,r

)
with the notations U , V from (3). Details on this formula are available in the Appendix 6.

The likelihood function is defined as L(θ) =
∏M
j=1 L(Xj , θ). The maximum likelihood estimator

θ̂ := (µ̂, Ω̂, ψ̂) when d = 1 and θ̂ := (µ̂, Ω̂) when d = 2 is defined by

θ̂ = arg max
θ
L(θ) = arg max

θ

M∏
j=1

L(Xj , θ)

This estimator is not explicit. In the mixedsde package, the function optim is used to maximize
numerically the likelihood. Initialization of optim is obtained by computing the mean and the
variance of the estimators Aj of the random parameters (see equation (2)). Sufficient statistics Uj
and Vj are discretized as explained in Section 2.1.

Note that this parametric approach requires the knowledge of σ2 to compute the sufficient
statistics Uj and Vj because Vj appears alone in Rj . We plug the following estimator of σ2

σ̂2 =
1

M

M∑
j=1

(
1

N

N−1∑
k=0

((Xj(tk+1)−Xj(tk))2

∆ka2(Xj(tk))

)
. (7)

Selection of (non-nested) models can be performed with the BIC criteria, defined by−2 logL(θ̂)+

2 log(M) for model with one random effect and −2 logL(θ̂) + 4 log(M) with two random effects
and the AIC criteria defined by −2 logL(θ̂) + 2 for one random effect and −2 logL(θ̂) + 4 for
two random effects. These asymptotic criteria indicate the trade-off between maximizing fit and
minimizing model complexity. Note that their theoretical properties are guaranteed only when σ2

is known.

2.3 Bayesian parametric approach
For the Bayesian approach we assume similarly to the frequentist parametric estimation method a
Gaussian distribution for φj , with a diagonal covariance matrix Ω = diag(ω2

1 , ω
2
2). In this method,

we estimate in the same time the diffusion coefficient σ. The parameters of interest are thus
θ = (µ,Ω, σ) and we want to estimate their posterior distribution p(θ|(Xj(tk))j=1,...,M,k=1,...,N ).
Let denote X1:M = (Xj(tk))j=1,...,M,k=1,...,N in the following.

We now introduce prior distributions implemented in mixedsde package for the parameters θ:

µ ∼ N (m,V ), V = diag(v)

ω2
i ∼ IG(αω,i, βω,i), i = 1, 2

σ2 ∼ IG(ασ, βσ),

where IG is the inverse Gamma distribution which is conjugate to the normal likelihood and
m,V, αω,i, βω,i, ασ, βσ are hyperparameters fixed by the user. The case of only one random effect
is nested by setting ω2

1 or ω2
2 equal to zero.

The aim is to calculate the posterior distribution p(θ|X1:M ) which is not explicit for the whole
vector of parameters. Therefore, we simulate it through a Gibbs sampler (see e.g. Robert and
Casella, 2004). Here, we have a true transition density of both processes that is used for the
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likelihood, see Iacus (2008). For a general hierarchical diffusion approach based on the Euler
approximation, see Hermann et al. (2016).

Analogically to the frequentist approach, there is a first step: sample from the full conditional
posterior of the random effects p(φj |(Xj(tk))k=1,...,N , θ), j = 1, . . . ,M . This is done by a Metropolis
Hastings (MH) algorithm.

The second step is the estimation of the hierarchical parameters µ and Ω. Full conditional
posteriors p(µ|φ1, . . . , φM ,Ω) (resp. p(Ω|φ1, . . . , φM , µ)) are Gaussian (resp. inverse Gamma) and
can, for example, be found in Hermann et al. (2016).

The last step of the Gibbs sampler is sampling from the full conditional posterior of σ2. For
the CIR model, this is also conducted by a MH step. For the OU model, the inverse Gamma
distribution is conjugate to the normal likelihood. The full conditional posterior distribution is
given by

σ2|X1:M , φ1, ..., φM ∼

IG

ασ +
MN

2
, βσ +

1

2

M∑
j=1

N∑
k=1

βj
1− e−2βj∆k

(
Xj(tk)− αj

βj
−
(
Xj(tk−1)− αj

βj

)
e−βj∆k

)2
 .

In the case of one random effect, there is one additional Gibbs sampler step for the fixed effect,
that is also conducted through a MH algorithm.

In the package, the starting values for the Gibbs sampler are set equal to the mean of the
prior distributions. In all the MH algorithms, one each has to choose a proposal density. In the
package mixedsde, we use a normal density for all location parameters with mean equal to the last
chain iteration and a proposal variance that has to be chosen. For the CIR model, the proposal
distribution for σ2 is chosen by

√
σ2 ∼ N (

√
σ2

prev, variance) where σ2
prev is the previous value

of σ2. The remaining question is how to choose the suitable proposal variance. This variance
controls the chain dependence and the acceptance rate. If the variance is small, the acceptance
rate is large and the chains gets very dependent. If the proposal variance is large, only few
candidates are accepted with the advantage of weakly dependent chains. This problem is solved
in the package with an adaptive Metropolis-within Gibbs algorithm (Rosenthal , 2011) using the
proposal distribution N (0, e2l) with l the logarithm of the standard deviation of the increment.
This parameter is chosen so that the acceptance rate is approximately 0.44 which is proposed to
be optimal in the Metropolis-within Gibbs sampler. It is proposed to add/subtract an adoption
amount δ(n) = min(0.1, n−1/2) to/from t after every 50th iteration and adapt the proposal variance
if the acceptance rate is smaller than 0.3 or larger than 0.6.

2.4 Predictions
In many cases, one is not only interested in parameter estimation but also in the prediction
for future observations. The first step is the prediction of a future random effect φpred. The
simulation of a new random effect is direct for the frequentist parametric approach sampling from
N (µ̂, Ω̂). For the nonparametric approach, first note that f̂h is an estimator given on a discrete
grid {x1, . . . , xn}, i.e. a vector of corresponding {p1, . . . , pn} after normalisation. Simulating from
the estimator f̂h can therefore be performed simulating a discrete variable from vector {x1, . . . , xn}
with (normalized) probabilities {p1, . . . , pn}. For the Bayesian approach, a new φpred is sampled
from the predictive distribution p(φpred|X1:M ) =

∫
p(φpred|µ,Ω)p(µ,Ω|X1:M ) d(µ,Ω) where the

posterior of µ and Ω is approximated by the results of the Gibbs sampler. This distribution is not
explicit, we propose to sample over a grid through inversion method, equal to the nonparametric
case.

Given a new random effect φpred, we are able to simulate predictive trajectories. This is per-
formed using the transition density p(X(tk)|X(tk−1), φpred, σ

2) for the frequentist approach. The
starting points of the process xj are the observed ones. For the Bayesian approach, we implement
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two prediction settings. Firstly, analogously to the frequentist approach a new trajectory is sim-
ulated using the transition density p(X(tk)|X(tk−1), φpred, σ

2) where φpred is sampled from the
MCMC posterior distribution p(φ|X1:M ). Secondly, we can calculate the predictive distribution

p(X(ti)|X1:M ) =

∫
p(X(ti)|φpred, σ

2)p(φpred, σ
2|X1:M ) d(φpred, σ

2)

in each time point. We can then calculate only the quantiles for a prediction interval or to draw
directly samples from the predictive distribution. For this predictive distribution, we take the
starting point xj = x0 to be the same for all series. If the starting points would vary, this is
an additional random effect whose density has to be estimated. This is not implemented in the
estimation procedure and will, therefore, left out for the prediction.

It is then interesting to compare the new trajectories to the real ones and if the number of new
trajectories is large enough, to compute an empirical confidence interval.

3 Overview of the mixedsde functions
This Section presents an overview of the functions implemented in the package. Illustrations of
the code are given in Section 4.

3.1 Data
Data is a matrix X of sizeM×N forM trajectories with N time points, not necessarily equidistant
but similar for theM trajectories. The vector of times is a vector times of length N . Real datasets
are available on the package, and detailed on Section 5.

To lead a simulation study, the function mixedsde.sim allows to generate a list with a M ×N
matrix X of M trajectories on the interval [0, T ] with N equidistant points (default value 100)
and a vector times with the equidistant times. This function leans on function sde.sim available
via package sde from the web address http://cran.r-project.org/package=sde, to simulate
SDE. One has to choose: model either OU or CIR; random that fixes the position and the number
of random effects: random = 1 for αj random, random = 2 for βj random or random = c(1,2)
for αj and βj random; σ the diffusion coefficient; invariant, default value 0 means that X0 is 0
(default) or fixed by the user, value 1 means that X0 is generated from the invariant distribution
(see details in the package documentation); density.phi to choose the distribution of the random
effect (see package documentations).

3.2 Main function
Main function is mixedsde.fit producing estimation of the random effects and their common
density. Inputs of mixedsde.fit are

• X a M ×N matrix containing the trajectories by rows

• times the vector of observations times

• model the chosen model either OU or CIR

• random that fixes the position and the number of random effects: random = 1 for αj random,
random = 2 for βj random or random = c(1,2) for αj and βj random

• estim.method the estimation method: nonparam (see Section 2.1), paramML (see Section 2.2)
or paramBayes (see Section 2.3)

• fixed the value of the fixed effect β (resp. α) when random = 1 (resp. random = 2), default
0. (Only for the frequentist approaches).

• estim.fix 1 if the fixed effect is estimated, default 0. (Only for the frequentist parametric
approach when random=1 or 2).
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Table 1 – Summary of the different methods for the two S4-classes Freq.fit and Bayes.fit resulting
of the function mixedsde

class Freq.fit Bayes.fit
method out out
method plot plot
method – plot2compare
method print print
method summary summary
method pred pred
method valid valid

• gridf the x-axis grid on which the random effect distribution is computed: we recommend
a fine grid with at least 200 points, default value is a sequence of length 500 starting in
0.8×minj φ̂j and ending in 1.2×maxj φ̂j . (Only for the frequentist approaches)

• prior the list of prior parameters m, v, alpha.omega, beta.omega, alpha.sigma, beta.sigma
for paramBayes method: default values are calculated based on the estimations (Aj)j for the
first min(3, dM · 0.1e) series and main estimation is only made with the remaining bM · 0.9c.
(Only for the Bayesian approach)

• nMCMC length of the Markov chain for paramBayes method. (Only for the Bayesian approach)

In the following we describe the related methods, proposed in the package, they are summarised
in Table 1.

3.3 Outputs
Output of mixedsde.fit is a S4 class called Freq.fit for the frequentist approaches and Bayes.fit
for the Bayesian approach. Results of the estimation procedure are available as a list applying
function out to the Freq.fit (resp. Bayes.fit) object.
Elements of Freq.fit are:

• sigma2 estimator σ̂2 of the diffusion coefficient
• estimphi estimator (Aj)j of the random effects

• estimphi.trunc truncated estimation (Âj)j of the random effects
• estim.fixed estimator of the fixed effect if random = 1 or 2, estim.method = paramML;
estim.fix = 1, default 0

• gridf the x-axis grid on which the random effect distribution is computed
• estimf estimator of the density of the random effects (for both paramML and nonparam

methods)
• cutoff binary M -vector of binary values indicated the truncated trajectories, default FALSE

when no truncation
• estimf.trunc truncated estimation of the density of the random effects
• mu estimation of Gaussian mean of the random effects (only for paramML method)
• omega estimation of Gaussian variance matrix of the random effects (only for paramML

method)
• aic and bic AIC and BIC criteria (only for paramML method)
• index index of trajectories used for the estimation, excluded are trajectories with Vj = 0 or
Vj = +∞ (one random effect) or detV = +∞ (two random effects), trajectories containing
negative values for CIR model,
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Elements of Bayes.fit are:

• sigma2 trace of the Markov chain simulated from the posterior of σ2

• mu trace of the Markov chain simulated from the posterior of µ

• omega trace of the Markov chain simulated from the posterior of ω2

• alpha trace of the Markov chain simulated from the posterior of αj , nMCMC×M matrix if α
is random effect, nMCMC×1 otherwise

• beta trace of the Markov chain simulated from the posterior of βj , nMCMC×M matrix if β is
random effect, nMCMC×1 otherwise

• burnIn a proposal for the burn-in phase

• thinning a proposal for the thin rate

• ind.4.prior the indices used for the prior parameter calculation, M + 1 if prior parameters
were specified.

Outputs burnIn and thinning are only proposals for a burn-in phase and a thin rate. The proposed
burnIn is calculated by dividing the Markov chains into 10 blocks and calculate the 95% credibility
intervals and the respective mean. Starting in the first one, the block is taken as burn-in as long
as the mean of the current block is not in the credibility interval of the following block or vice
versa. The thinning rate is proposed by the first lag which leads to a chain autocorrelation of less
than 80%. It is not easy to automate these choices, so it is highly recommended by the authors to
verify the chains manually.

Command plot() applied to a Freq.fit object produces a frequencies histogram of (Aj(T ))j (one
or two according to the number of random effects) with the estimated density (red curve) and the
truncated estimator if available (dotted grey red curve) and a quantile-quantile graph with the
quantiles of the Aj ’s versus the quantiles of a normal sample of the same length, with the same
empirical mean and standard deviation. This illustrates the normality of the sample. Applying
this function to the nonparametric results indicates if the Gaussian assumption of the parametric
approach is appropriate. When plot() is applied to a Bayes.fit object, one can choose four
different options, named style. The default value is chains, it plots the Markov chains for the
different parameter values. acf leads to the corresponding autocorrelation functions, density to
the approximated densities for each parameter and cred.int leads to the credibility intervals of
the random parameters with the input parameter level with default 0.05. For all options, with
the input parameter reduced = TRUE, the burn-in period is excluded and a thinning rate is taken,
default is FALSE. There is also a possibility to include the prior means in the plots by lines with
plot.priorMean = TRUE, default is FALSE.

In the Bayesian estimation the influence of prior parameters is interesting, thus for the Bayes.fit
object, there is a second plot method, named plot2compare where three estimation objects can
be compared. For reasons of clarity, only the densities are compared, with the default reduced =
TRUE. Here, there is also a possibility to include true.values, a list of the true parameters for the
comparison in a simulation example.

Command summary() applied to a Freq.fit object computes the kurtosis and the skewness
of the distribution, σ̂2, the empirical mean and standard deviation computed from the estimators
(Aj)j , µ̂, Ω̂ (and the fixed effect α̂ or β̂), AIC, BIC criteria for the frequentist MLE method.
When applied to a Bayes.fit object, it computes means and credibility interval (default level
95%) for each parameter (µ,Ω, σ, α, β). Here, there is also a possibility to choose the burn-in and
the thinning rate manually by the input parameters burnIn and thinning.

Command print() applied to a Freq.fit object returns the use or not of the cutoff and the
vector of excluded trajectories. When applied to a Bayes.fit object, it returns the acceptance
rates of the MCMC procedure.
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3.4 Validation methods
Validation of a mixed model, obtained with function valid, is an individual validation. Indeed, the
validation of trajectory j is obtained comparing it toM new trajectories simulated with parameters
(α, β) fixed to the estimator Aj (or Âj) in the frequentist approaches and to the posterior means
in the Bayesian approach. Inputs of the function are

• Freq.fit or Bayes.fit object

• plot.valid 1 to generate a figure (default value is 1)

• numj a specific individual trajectory to validate (default all trajectories)

• Mrep number of simulated trajectories (default value 100)

Each observationXnumj(tk) is compared with the Mrep simulated values (X1
numj(tk), . . . , X

Mrep
numj (tk)),

for k = 1, . . . , N .
Outputs are the list of the (X1

numj(tk), . . . , X
Mrep
numj (tk)). If plot.valid=1, two plots are pro-

duced. Left: plot of the Mrep new trajectories (black) and the true trajectory number numj (in
grey/red). Right: quantile-quantile plot of the quantiles of a uniform distribution and the N quan-
tiles obtained comparing Xnumj(tk) with the Mrep simulated values (X1

numj(tk), . . . , X
Mrep
numj (tk)), for

k = 1, . . . , N .
This is an empirical method. The recent work Kuelbs and Zinn (2015) on depth and quantile

regions for stochastic processes (see for example Zuo and Serfling (2000) for depth functions
definitions) should provide the theoretical context for a more extensive study. This could be done
in further works.

3.5 Prediction methods
Prediction (see Section 2.4) is implemented in function pred. Main inputs of the function are

• Freq.fit or Bayes.fit object

• invariant TRUE if the new trajectories are simulated according to the invariant distribution

• level level of the empiric prediction intervals (default 0.05)

• plot.pred TRUE to generate a figure (default TRUE)

(and optional plot parameters). Function pred applied to a Freq.fit object returns a list with
predicted random effects phipred, predicted trajectories Xpred and indexes of the corresponding
true trajectories indexpred (see Section 2.4 for details of simulation). If plot.pred = TRUE
(default) three plots are produced. Left predicted random effects versus estimated random effects.
Middle: true trajectories. Right predicted trajectories and their empirical 95% prediction intervals

(default value level=0.05). The prediction can also be done from the truncated estimator ̂̂fh
based on the Âj (5), if the argument pred.trunc = 1.

Function pred applied to a Bayes.fit object returns a S4 class object Bayes.pred. The
first element of this class is Xpred, which depends on the input parameters. Including the in-
put trajectories = TRUE, matrix Xpred contains the M drawn trajectories by rows (see first
method described for the Bayesian approach in Section 2.4). Default is trajectories = FALSE
which leads to the calculation of the predictive distribution explained in Section 2.4. With the
input only.interval = TRUE (default), only the quantiles for the 1- level prediction interval are
calculated, stored in qu.l and qu.u. Input only.interval = FALSE provides additionally Xpred
containing sample.length (default 500) samples from the predictive distribution in each time
point of the observations (except the first). In both cases, with plot.pred = TRUE, two figures are
produced. On the left side, the data trajectories are compared with the prediction intervals and
on the right side, the coverage rate is depicted which is stored in entry coverage.rate, namely
the amount of series covered by the prediction intervals for each time point. The last class entry
estim stores the results from the Bayes.fit object in a list. Other input parameters are burnIn
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and thinning which allow for the choice of other burn-in phase and thinning rate than proposed
in the Bayes.fit object.

For the Bayes.pred class object, two plot methods are available. plot() repeats the figures
that are created with the plot.pred = TRUE command in the pred method. plot2compare()
compares up to three Bayes.pred objects, where in a first figure the prediction intervals are
presented in colors black, red and green and the observed data series in grey and in a second
figure the corresponding coverage rates are compared. With the input parameter names a vector
of characters to be written in a legend can be indicated.

4 Package mixedsde through simulated examples
In this part two simulated examples are given to illustrate the strengths of each proposed method.
Two datasets are simulated according to:

1. CIR model with one non-Gaussian random effect βj ∼ Γ(1.8, 0.8), αj = 1, T = 50, M = 200,
N = 1000:

model1 <- "CIR"; random1 <- 2; fixed1 <- 1; sigma1 <- 0.1 ; M1 <- 200; T1 <- 50;
N1 <- 1000; X01 <- 1; density.phi1 <- "gamma"; param1 <- c(1.8, 0.8);

simu1 <- mixedsde.sim(M=M1, T=T1, N=N1, model=model1, random=random1,
fixed=fixed1, density.phi=density.phi1, param=param1, sigma=sigma1, X0=X01)

X1<- simu1$X; phi1 <- simu1$phi; times1 <-simu1$times

2. OU model with one Gaussian random effect αj ∼ N (3, 0.52), βj = 5, T = 1, M = 50,
N = 500:

model2 <- "OU"; random2 <- 1; sigma2 <- 0.1; fixed2 <- 5; M2 <- 50; T2 <- 1;
N2 <- 500; X02 <- 0; density.phi2 <- "normal"; param2 <- c(3, 0.5);

simu2 <- mixedsde.sim(M=M2, T=T2, N=N2, model=model2, random=random2,
fixed=fixed2, density.phi=density.phi2, param=param2, sigma=sigma2, X0=X02)

X2 <- simu2$X; phi2 <- simu2$phi; times2 <- simu2$times

Example 1 has non Gaussian random effect, the nonparametric method is the most appropriate
approach. Example 2 has T small and Gaussian random effect, nonparametric method is therefore
not the most appropriate approach. Parametric methods should performed well with a preference
to the Bayesian as the number of trajectories M2 = 50 is not large.

4.1 Frequentist nonparametric estimation
We illustrate nonparametric estimation on Example 1. Code for the nonparametric estimation is

estim.method <- ’nonparam’
estim_nonparam <- mixedsde.fit(times=times1, X=X1, model=model1, random=random1,

fixed=fixed1, estim.method=estim.method)
outputsNP <- out(estim_nonparam) # stores the results in a list

Summary function provides:

summary(estim_nonparam, newwindow=FALSE)
[,1] [,2]

[1,] "kurtosis" "11.0008360676508"
[2,] "skewness" "2.16789214842904"

[,1] [,2]
[1,] "sigma" "0.100164891397244"
[2,] "empiric mean" "1.38241196209623"
[3,] "empiric sd" "1.10890963312551"
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Density of the random effect
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Figure 1 – Simulated example 1 (CIR with one Gamma random effect), nonparametric estimation.
Left: histogram of estimated random effects (Aj) and nonparametric estimation of f . Right: qqplot
of (Aj) versus a Normal sample (true distribution is Gamma)
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Figure 2 – Simulated example 1 (CIR with one Gamma random effect), nonparametric estimation,
comparison to the truth. Left: estimation f̂ (dotted line) and true density f (plain line). Right:
Estimated random effects Aj versus true random effects φj

As expected kurtosis is larger than 3 and skewness is positive which means that the distribution
is right-tail. Figure 1 is provided by

plot(estim_nonparam)

Nonparametric estimation fits well the histogram of (Aj) (left plot) and we see that the random
effects are non-Gaussian (right plot). Because we are working on simulated data, we can compare
the estimations with the true random effects and the true f :

# comparison of the true f and its estimation
gridf1 <- outputsNP$gridf
f1 <- dgamma(gridf1, param1[1], param1[2]) # true density function
fhat <- outputsNP$estimf # nonparametric estimated density function
plot(gridf1, f1, type=’l’, lwd=2, xlab=’’, ylab=’’) # plot of the true density
lines(gridf1, fhat, col=’red’) # plot of the nonparametric estimated density
# comparison of the true random effects and their estimations
phihat1 <- outputsNP$estimphi # estimated random effects
plot(phi1, phihat1, type = "p", pch = 18, xlab=’’, ylab=’’) # true vs estimated
abline(0, 1)

It yields to Figure 2. On the left plot, the estimated density (dotted curve) is very close to the true
density f (plain line). The right plot shows that Aj is a good estimation of φj . This confirms that
the nonparametric approach performs well for this settings. Validation of the MSDE is produced
by function valid. The two graphs on the right of Figure 5 are obtained by

choice1 <- floor(runif(1,1,M))
validationCIR <- valid(estim_nonparam, numj=choice1)
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Prediction are obtained with pred and similar Figure 6 (not shown) can be obtained with

predNPCIR <- pred(estim_nonparam)

4.2 Frequentist parametric estimation
We present the parametric estimation on Example 2. The code is

#- parametric estimation
estim.method<-’paramML’;
estim_param <- mixedsde.fit(times2, X2 = X2, model2 = model2, random2 = random2,

estim.fix = 1, estim.method = ’paramML’ )
outputsP <- out(estim_param) # stores the results in a list

Summary function provides:

> summary(estim_param)
[,1] [,2]

[1,] "BIC" "-3719.87172444398"
[2,] "AIC" "-3735.51554873924"

[,1] [,2]
[1,] "kurtosis" "2.64264939857654"
[2,] "skewness" "0.206900579156786"

[,1] [,2]
[1,] "sigma" "0.107968951754119"
[2,] "estim.fixed" "4.82151311689343"
[3,] "empiric mean" "2.86790431456589"
[4,] "MLE mean" "2.86796970882836"
[5,] "empiric sd" "0.568834742920312"
[6,] "MLE sd" "0.552572219170386"

Kurtosis is, as expected, close to 3 and skewness close to 0. The diffusion parameter σ is well
estimated (true value 0.1). The fixed effect is also well estimated (true value 5). Empirical mean
and standard deviations are very close to MLE (estimator of the mean is the same in that case)
and close to the real ones (3, 0.5). Then, Figure 3 (left and right) is provided by

plot(estim_param)
valid(estim_param)

The small number of observations makes the frequentist estimation harder, nevertheless here, the
histogram seems pretty well fitted by the parametrically estimated density. Because we are working
on simulated data, we can compare the estimations with the true random effects and the true f :

# comparison of the true f and its estimation
gridf2 <- outputsP$gridf
f2 <- dnorm(gridf, param[1], param[2]) # true density
fhat_param <- outputsP$estimf # parametric estimated density
plot(gridf2, f2, type = ’l’, lwd = 2, xlab = ’’, ylab = ’’) # plot of the true density
lines(gridf2, fhat_param, col=’red’, lty = 2, lwd = 2) # plot of the estimated density
# comparison of the true random effects and their estimations
phihat2 <- outputsP$estimphi # estimated random effects
plot(phi2, phihat2, type="p", pch=18, xlab=’’, ylab=’’) # true vs estimated
abline(0, 1)

It yields to Figure 4. It shows that estimation of the density is satisfactory (left) and estimation
of the random effects is very good (right).

Validation of the MSDE is produced by function valid. For example the individual validation
of the first trajectory is plotted Figure 5, the first two graphs on the left, using
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Figure 3 – Simulated example 2 (OU with one Gaussian random effect) frequentist parametric
estimation. Left: histogram of the (Aj) and Gaussian parametric estimation of f . Right parametric
qqplot of (Aj) versus a Normal sample
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Figure 4 – Simulated example 2 (OU with one Gaussian random effect) frequentist parametric
estimation, comparison to the truth. Left: parametric estimation N (µ̂, ω̂2) (dotted line) and true f
(plain line). Right: true φj versus estimated random effects Aj
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Figure 5 – Simulated examples frequentist approaches, outputs of valid method. Two left plots:
frequentist nonparametric estimation on example 1 (CIR process). Two right plots: frequentist
parametric estimation on example 2 (OU process)

Figure 6 – Simulated example 2 (OU with one Gaussian random effect), frequentist parametric
estimation. Left: predicted random effects versus estimated random effects. Middle: true trajectories.
Right: predicted trajectories in black and 95% prediction interval in grey (green)

choice2 <- floor(runif(1,1,M))
validationOU <- valid(estim_param, numj =choice2)

This illustrates the good estimation of the random effects: a beam of trajectories with the true
one in the middle and the lining up of the quantiles.

Finally, we can predict some trajectories using pred. Predictions are shown on Figure 6, as a
result of

predPOU <- pred(estim_param)

Beam of predicted trajectories (right) is close to the true one (middle). The lining up of the
predicted random effects versus the estimated random effects (left) shows the goodness of the
prediction from the estimated density, thus of the estimation of the density.

4.3 Bayesian estimation
Bayesian method is applied to Example 2. Priors are constructed from the true values, but default
values can be used.

prior2 <- list( m = c(param2[1], fixed2), v = c(param2[1], fixed2), alpha.omega = 11,
beta.omega = param2[2]^2*10, alpha.sigma=10, beta.sigma = sigma^2*9)

estim.method <- ’paramBayes’
estim_bayes <- mixedsde.fit(times2, X2, model = ’OU’, random = 2, estim.method,

prior = prior2, nMCMC = 10000)
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Figure 7 – Simulated example 2 (OU with one Gaussian random effect) Bayesian estimation. Markov
chains of µ1, β, ω2

1 and σ2

outputsBayes <- out(estim_bayes)

Figure 7 is produced by

plot(estim_bayes)

Traces of the Markov chains of µ1, β, ω2
1 and σ are plotted, showing that all chains converge and

have the correct location. Command print() yields acceptance rates of the MH algorithm:

print(estim_bayes)
[1] "acceptance rates for random effect:"
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.5607 0.5675 0.5694 0.5705 0.5730 0.5828
[1] "acceptance rate for fixed effect:" "0.3591"

The fixed effect β has a small acceptance rate, explaining the dependent chain (Figure 7 top
right). This is due to a very sharp likelihood because of the large amount of observations (N ·M)
in comparison to the random effect (N).

Predictions in the Bayesian framework and the corresponding Figure 8 is obtained by

pred.result <- pred(estim_bayes)

Figure 8 shows the beam of simulated data trajectories together with the 95% prediction
interval. Coverage rates are shown on the right plot and we see that the intervals hold the level.

5 Package mixedsde through a real data example
A real dataset is available (neuronal.data.rda) through lists of a matrix X and a vector times.
We detail below the analysis of this dataset, following the next steps: run the two random effects
model with both the parametric and nonparametric procedure; choose the number of random
effects depending on the variability of the estimators (Aj,1, Aj,2), on the shape of f̂h and the
variance Ω̂.
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Figure 8 – Simulated example 2 (OU with one Gaussian random effect) Bayesian estimation. Left:
predicted trajectories in black and 95% prediction interval in grey (green). Right: coverage rates:
amount of observed values covered by the prediction intervals

Figure 9 – Neuronal data

These data are available thanks to Rune Berg and Jufang He. Details on data acquisition can
be found in Lansky et al. (2006).

5.1 Neuronal data (neuronal.data)
Neurons are the basement of nervous system and each neuron is connected with around 1000 other
neurons. They are communicating through emission of electrical signal. We focus on the dynamic
of the neuron membrane potential between two spikes emission measured in volts as the difference
of ions concentration between the exterior and the interior of the cell. Data are obtained from
one single neuron of a pig. Data are composed of M = 240 membrane potential trajectories with
N = 2000 equidistant observation times. Time step is δ = 0.00015 [s] and observation time is
T = 0.3 [s]. Data are uploaded using data(neuronal.data). They are presented on Figure 9.

These data have been previously analysed with a Ornstein-Uhlenbeck model with one additive
random effect (αj): Picchini et al. (2008) and Picchini et al. (2010) use parametric methods
assuming the normality of the random effect, and Dion (2014) with a nonparametric method.
Here αj represents the local average input that the neuron receives after the jth spike. The initial
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voltage (the value following a spike) is assumed to be equal to the resting potential and set to zero:
xj = 0. Parameter βj (non negative) is the time constant of the neuron. It was fixed in Picchini
et al. (2008) and Picchini et al. (2010).

In this new analysis, we assume that both αj and βj may change from one trajectory to another
because of other neurons or environment influence, for example. Indeed, the form of each trajectory
lead us to think that this is the good model: each one has its mean-revert value and its own speed
to reach this value. There is no reason to assume that the speed is always the same, but looking at
the trajectories the stationary state seem reached nearly at the same time, thus the second random
effect should have a small variance.

5.2 Fitting with MSDEs
Our goal is also to compare the two models OU and CIR, both with two random effects, and two
approaches: the nonparametric density estimation and the parametric density estimation. Let us
remark that for the CIR model the algorithm removes two trajectories: 168 and 224, because they
contain negatives values. For two random effects the command is

estim <- mixedsde.fit(times, X=X, model= model, random = random,
estim.method = estim.method)

and they can be found in the help data file (command ?neuronal.data). We first apply the

two frequentist approaches on models with two random effects. Kurtosis and skewness of the
distribution of the estimationAj of the random effects given in Table 2 are not closed to a symmetric
distribution. The bidimensional density of (αj , βj) is estimated for both models with the parametric
and nonparametric methods running function mixedsde.fit. Figure 10 gives the 4 estimated
marginals. The blue (black) is for the OU model and the green (grey) for the CIR model. The
dotted lines are the estimations from the parametric method, the plain lines for the nonparametric
estimation. Parametric and nonparametric estimators are close, except for the second random
effect with the OU model. Indeed, parametric estimation produces a very small variance for the
second random effect, suggesting it could be fixed. Would this assumption be valid, it explains
the difference with the nonparametric estimator which is not stable if the variance is to small.
Estimation of σ is σ̂ = 0.0136 for the OU model and σ̂ = 0.163 for the CIR model.

To compare with previous literature results, we focus on the OU model. To select the number
and the position of the random effect, we run the code with one random effect, additive or mul-
tiplicative: random=1 or random = 2, for both models estimating the common fixed parameter.
Estimators of the means µ1, µ2 and standard deviations ω1, ω2 are given in Table 3 and compared
to values obtained in Picchini et al. (2008) and Picchini et al. (2010). Criteria AIC and BIC are
also given in Table 3. The preferred model is the one minimizing both criteria. Thus, the OU
model with one additive random effect φj = αj and β̂ = 37 seems to be the best model to describe
these data. The summary method gives for the kurtosis: 4.55 and for the skewness -0.95. Also
σ̂ = 0.0136. Estimated densities obtained for this model with β̂ = 37 are given in Figure 11.
The dotted line is the result of the parametric estimation and the plain line of the nonparametric
estimation, plotted on the histogram of the Aj(T )’s. The nonparametric estimation detects a left
tail that is not detected by the parametric one. Otherwise both estimators are very close.

The OU model with random= 1 is then validated with valid function. Figure 12 illustrates
the result for a random trajectory (number 232): 100 simulated trajectories (black) and true
trajectory (X232, red) (left plot) and quantiles of the true measurement among the 100 simulated
points at each time points versus uniform quantiles. The qq-plot is satisfactory (compared to
the graph obtained on simulated data Figure 5). Finally some prediction plots are performed
(not shown) with the pred method and they confirm that model OU with random = c(1,2) with
the parameters obtain from the parametric estimation, and the OU model with random = 1 and
β̂ = 37 produce very close trajectories and could be both validated.

We then apply the Bayesian procedure. As already mentioned, for the Bayesian procedure,
large data sets are a problem because of the very long running time. Therefore, we thin the data
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Table 2 – Neuronal data. Kurtosis and skewness estimations for samples (Aj,1)’s and (Aj,2)’s, for
OU and CIR models

OU CIR
(Aj,1) Kurtosis 6.16 11.69

Skewness 0.95 2.32
(Aj,2) Kurtosis 6.67 7.07

Skewness 1.63 1.86

Table 3 – Neuronal data. MLE and BIC AIC criteria for OU model, depending on the number of
random effects

µ1 ω1 µ2 ω2 BIC AIC
Picchini et al. (2008)
random=1 0.28 0.04 25.64 – -2969.70 -2978.71
Picchini et al. (2010)
random=1 0.49 0.07 47.00 – -3043.89 -3052.85
random=1 0.37 0.06 37.00 – -3240.45 -3249.41
random=2 0.38 – 38.82 7.76 -3093.12 -3102.08
random=c(1,2) 0.38 0.06 37.70 1.10 -3229.67 -3247.5

set by 10. That means, every 10th data point of the series is used for the estimation and also for
the prediction. Even with this thinning, one estimation with 20000 samples takes half an hour.

Based on the best model selected by the frequentist approach, the OU model with one random
effect φj = αj is fitted. No prior knowledge is available, we therefore leave this information out
and let the algorithm take the first 10%, i.e. 24, series for the calculation of the prior parameter,
as described in Section 3.2. Figure 13 plots the Markov chains estimated from the remaining
M − 24 = 216 trajectories and show good convergence of the chains. Bayesian point estimations,
i.e. posterior means, are µ̂1 = 0.34, ω̂1 =

√
ω̂2

1 = 0.06, β̂ = 33 and σ̂ =
√
σ̂2 = 0.01. Compared to

frequentist estimation (Table 3), we notice that these results are a compromise between Picchini
et al. (2010) and frequentist estimation.
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Figure 10 – Neuronal data. Frequentist estimated marginals of the bidimensionnal density of the
random effects obtained from 4 estimators. Left: αj ’s density, right: βj ’s density. CIR model in
green (grey), OU in blue (black). Nonparametric in plain line, parametric in dotted line
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Figure 11 – Neuronal data, OU model, α random, β fixed, frequentist approaches. Estimation of the
density f : parametric estimation in blue (black) plain line, non-parametric estimation blue (black)
dotted line and histogram of the Aj ’s

Figure 12 – Neuronal data, OU model, α random, β fixed, validation of the frequentist approaches.
Individual validation of trajectory 232. Left: 100 simulated trajectories in black and true trajectory
(Xj) in grey (red). Right: quantiles of the true measurement among the 100 simulated points at
each time points versus uniform quantiles
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Figure 13 – Neuronal data, OU model, α random, β fixed, Bayesian estimation. Reduced Markov
chains (less the burn-in phase and the thinning rate)
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6 Discussion
In this paper we illustrate the functionality of the package mixedsde for inference of stochastic
differential equations with random and/or fixed effects. This package, and mainly the function
misedsde.fit, can be used to choose the best model to fit some data. It allows to compare
two models: OU or CIR with one or two random effects. The three estimation methods can
be used to help the decision maker. Nevertheless each method can be more appropriate to a
specific situation, as explained before: the Bayesian method is recommended for a small number
of observations, the frequentist nonparametric is a good tool with two random effects and no prior
available. In particular the frequentist parametric proposes for a large sample, an estimation of
the fixed effect and of the parameters of the Gaussian distribution for the fixed effect when there
is only one. A neuronal dataset is studied with the three methods. To enrich this package and this
study, one could implement the parameter estimation method developed in Delattre et al. (2016)
for random effects distributed according to a Gaussian mixture distribution. Furthermore, other
real data should be investigated with the present package.

Appendix
When there is one random effect, what is the likelihood function and the MLE of the fixed effect?

Assume that we are in the case of random = 1, thus the process is

dXj(t) = (α− φjXj(t))dt+ σa(Xj(t))dWj(t)

Let us compute the log-likelihood function when φj = ϕ fixed. We omit the subscript j in the
following. We use the same notation as for random=c(1,2), where V is a symmetric matrix size
2× 2. We have :

logL(X,α, ϕ) =

∫ T

0

b(X(s), ϕ)

σ2(X(s))
dX(s)− 1

2

∫ T

0

b2(X(s), ϕ)

σ2(X(s))
ds

= αU1 −
α2

2
V1,1 + ϕ[U2 − αV1,2]− ϕ2

2
V2,2.

We assume that the random effect is Gaussian with density fξ, and denote ξ = (µ, ω) and θ :=
(µ, ω, α). Thus,

L(X, θ) =

∫
exp

(
αU1 −

α2

2
V1,1 + ϕ[U2 − αV1,2]− ϕ2

2
V2,2

)
fξ(ϕ)dϕ =

∫
exp(E(ϕ))dϕ.

We find:

E(ϕ) = αU1 −
α2

2
V1,1 −

1

2

[
ϕ2(V2,2 + ω−2)− 2ϕ(U2 − αV1,2 + µω−2)

]
= αU1 −

α2

2
V1,1 −

1

2Σ2
(ϕ−m)2 +

m2

2Σ2
− 1

2
µ2ω−2

with

m =
µ+ ω2U2 − ω2V1,2α

1 + ω2V2,2
, Σ2 =

ω2

1 + ω2V2,2
. (8)

Finally after simplification we get:

m2

2Σ2
− 1

2
µ2ω−2 = −1

2
(1 + ω2V2,2)−1V2,2[µ− V −1

2,2 (U2 − αV1,2)]2 +
1

2V2,2
(U2 − αV1,2)2.
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Thus for random=1 we get

L(X, θ) =
1√

1 + ω2V2,2

exp

[
αU1 −

α2

2
V1,1 −

V2,2

2(1 + ω2V2,2)
[µ− V −1

2,2 (U2 − αV1,2)]2 +
(U2 − αV1,2)2

2V2,2

]
.

(9)
Then, when random = 2 the roles of α and ϕ are exchanged. To implement a general formula, we
note: r for random: 1 or 2, and c for the number of the common effect. We denote ψ the fixed
effect and we the get the general formula:

L(X, θ) =
1√

1 + ω2Vr,r
exp

[
ψUc −

ψ2

2
Vc,c −

Vr,r
2(1 + ω2Vr,r)

[µ− V −1
r,r (Ur − ψVc,r)]2 +

(Ur − ψVr,c)2

2Vr,r

]
.

(10)
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