Sampling from a strongly log-concave distribution with the Unadjusted Langevin Algorithm - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Sampling from a strongly log-concave distribution with the Unadjusted Langevin Algorithm

Résumé

We consider in this paper the problem of sampling a probability distribution π having a density w.r.t. the Lebesgue measure on $\mathbb{R}^d$, known up to a normalisation factor $x \mapsto \mathrm{e}^{−U (x)} / \int_{\mathbb{R}^d} \mathrm{e}^{−U (y)}\mathrm{d}y$. Under the assumption that $U$ is continuously differentiable, $\nabla U$ is globally Lipshitz and $U$ is strongly convex, we obtain non-asymptotic bounds for the convergence to stationarity in Wasserstein distances of the sampling method based on the Euler discretization of the Langevin stochastic differential equation for both constant and decreasing step sizes. The dependence on the dimension of the state space of the obtained bounds is studied to demonstrate the applicability of this method in the high dimensional setting. The convergence of an appropriately weighted empirical measure is also investigated and bounds for the mean square error and exponential deviation inequality for Lipschitz functions are reported. Some numerical results are presented to illustrate our findings.
Fichier principal
Vignette du fichier
main.pdf (475.32 Ko) Télécharger le fichier
hist.pdf (3.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01304430 , version 1 (19-04-2016)
hal-01304430 , version 2 (09-12-2016)

Identifiants

  • HAL Id : hal-01304430 , version 1

Citer

Alain Durmus, Éric Moulines. Sampling from a strongly log-concave distribution with the Unadjusted Langevin Algorithm. 2016. ⟨hal-01304430v1⟩
1003 Consultations
1522 Téléchargements

Partager

More