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Abstract

We consider in this paper the problem of sampling a probability distribution π hav-

ing a density w.r.t. the Lebesgue measure on R
d, known up to a normalisation factor

x 7→ e−U(x)/
∫
Rd e−U(y)dy. Under the assumption that U is continuously differentiable,

∇U is globally Lipshitz and U is strongly convex, we obtain non-asymptotic bounds for the

convergence to stationarity in Wasserstein distances of the sampling method based on the

Euler discretization of the Langevin stochastic differential equation for both constant and

decreasing step sizes. The dependence on the dimension of the state space of the obtained

bounds is studied to demonstrate the applicability of this method in the high dimensional set-

ting. The convergence of an appropriately weighted empirical measure is also investigated

and bounds for the mean square error and exponential deviation inequality for Lipschitz

functions are reported. Some numerical results are presented to illustrate our findings.

1 Introduction

Let π be a probability distribution on R
d, d ≥ 1, with density x 7→ e−U(x)/

∫

Rd e
−U(y)dy w.r.t. the

Lebesgue measure, where U is continuously differentiable, gradient Lipshitz and strongly convex.
Consider the Langevin stochastic differential equation associated with π:

dYt = −∇U(Yt)dt+
√
2dBt , (1)

where (Bt)t≥0 is a d-dimensional Brownian motion. Under the stated assumptions on U , π
satisfies a log-Sobolev inequalities (see [2, 6, 3]) and the Markov semi-group associated with
the Langevin diffusion (Yt)t≥0 converges exponentially fast to π with a rate independent of the
dimension of the state space. We study in this paper the sampling method based on the Euler-
Maruyama discretization scheme associated to the Langevin diffusion, which defines a (possibly)
non-homogeneous, discrete-time Markov chain given by

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1 (2)
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where (Zk)k≥1 is an i.i.d. sequence of standard Gaussian random variables and (γk)k≥1 is a
sequence of stepsizes, which can either be held constant or be chosen to decrease to 0.

This method was originally proposed in the physics literature by [19] and introduced in
the computational statistics community by [11] and [12]. It has been studied in depth by [21],
which proposed to use a Metropolis-Hastings step at each iteration to enforce reversibility w.r.t. π
leading to the Metropolis Adjusted Langevin Algorithm (MALA). They coin the term unadjusted
Langevin algorithm (ULA) to stress the fact that the Metropolis-Hastings step is avoided.

We obtain in this paper non-asymptotic and computable bounds between the marginal laws
of the Markov chain (Xn)n≥0 defined by the Euler discretization and the target distribution π
in Wasserstein distance in nonincreasing step sizes. When the sequence of step sizes is constant
γk = γ for all k ≥ 0, the Markov chain (Xn)n≥0 has a unique stationary distribution πγ (see
[21]), which in most of the cases differs from the distribution π. Quantitative estimates between
π and πγ is obtained. When (γk)k≥1 decreases to zero and

∑∞
k=1 γk = ∞ then we show that the

marginal distribution of the non-homogeneous Markov chain (Xn)n≥0 converges to the target
distribution π with explicit expression for the convergence rate.

The paper is organized as follows. In Section 2, we study the convergence in Wasserstein
distances of the Euler discretization for constant and decreasing stepsizes. In Section 2.1 we pro-
vide non-asymptotic bounds of convergence of the weighted empirical measure. Some numerical
illustrations are given Section 3 to support our claims. The proofs are given in Section 4. Some
technical derivations are carried out in a supplementary paper [8].

Notations and conventions

Denote by B(Rd) the Borel σ-field of Rd, F(Rd) the set of all Borel measurable functions on R
d

and for f ∈ F(Rd), ‖f‖∞ = supx∈Rd |f(x)|. For µ a probability measure on (Rd,B(Rd)) and
f ∈ F(Rd) a µ-integrable function, denote by µ(f) the integral of f w.r.t. µ. We say that ζ is a
transference plan of µ and ν if it is a probability measure on (Rd×R

d,B(Rd×R
d)) such that for

all measurable set A of Rd, ζ(A×R
d) = µ(A) and ζ(Rd ×A) = ν(A). We denote by Π(µ, ν) the

set of transference plans of µ and ν. Furthermore, we say that a couple of Rd-random variables
(X,Y ) is a coupling of µ and ν if there exists ζ ∈ Π(µ, ν) such that (X,Y ) are distributed
according to ζ. For two probability measures µ and ν, we define the Wasserstein distance of
order p ≥ 1 as

Wp(µ, ν)
def

=

(

inf
ζ∈Π(µ,ν)

∫

R×R

‖x− y‖p dζ(x, y)
)1/p

.

By [23, Theorem 4.1], for all µ, ν probability measure on R
d, there exists a transference plan ζ⋆ ∈

Π(µ, ν) such that for any coupling (X,Y ) distributed according to ζ⋆,Wp(µ, ν) = E[‖X − Y ‖p]1/p.
This kind of transference plan (respectively coupling) will be called an optimal transference plan
(respectively optimal coupling) associated with Wp. We denote by Pp(R

d) the set of probability
measures with finite p-moment: for all µ ∈ Pp(R

d),
∫

Rd ‖x‖p µ(dx) < +∞. By [23, Theorem

6.16], Pp(R
d) equipped with the Wasserstein distance Wp of order p is a complete separable

metric space.
Let f : Rd → R be a Lipschitz function, namely there exists C ≥ 0 such that for all x, y ∈

R
d, |f(x)− f(y)| ≤ C ‖x− y‖. Then we denote ‖f‖Lip = inf{|f(x)− f(y)| ‖x− y‖−1 | x, y ∈

R
d, x 6= y}. The Monge-Kantorovich theorem (see [23, Theorem 5.9]) implies that for all µ, ν

probabilities measure on R
d,

W1(µ, ν) = sup

{
∫

Rd

f(x)µ(dx) −
∫

Rd

f(x)ν(dx) | f : Rd → R ; ‖f‖Lip ≤ 1

}

. (3)
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For all x ∈ R
d and M > 0, we denote by B(x,M), the ball centered at x of radius M . Let

n,m ∈ N
∗ and M be a n × n-matrix, then denote by MT the transpose of M and ‖M‖ the

Frobenius associated with M defined by ‖M‖ = Tr(MTM). Let n,m ∈ N
∗ and F : Rn → R

m

be a twice continuously differentiable function. Denote by ∇F and ∇2F the Jacobian and the
Hessian of F respectively. Denote also by ~∆F the vectorial Laplacian of F defined by: for all
x ∈ R

d, ~∆F (x) is the vector of Rm such that for all i ∈ {1, · · · ,m}, the i-th component of ~∆F (x)

is equals to
∑d

j=1(∂
2Fi/∂x

2
j)(x). In the sequel, we take the convention that for n, p ∈ N, n < p

then
∑n

p = 0 and
∏n

p = 1.

2 Non-asymptotic bounds in Wasserstein distance of order

2 for ULA

Consider the following assumption on the potential U :

H1. The function U is continuously differentiable on R
d and is gradient Lipschitz, i.e. there

exists L ≥ 0 such that for all x, y ∈ R
d,

‖∇U(x) −∇U(y)‖ ≤ L ‖x− y‖ .

Under H1, if µ0 is a probability measure satisfying
∫

‖x‖2µ0(dx) < ∞ then by [17, The-
orem 2.5, Theorem 2.9 Chapter 5] there exists a unique strong solution (Yt)t≥0 to (1) with
initial distribution µ0. Denote by (Pt)t≥0 the semi-group associated with (1), which is reversible
w.r.t. π, and hence admits π as its (unique) invariant measure.

H2. U is strongly convex, i.e. there exists m > 0 such that for all x, y ∈ R
d,

U(y) ≥ U(x) + 〈∇U(x), y − x〉+ (m/2) ‖x− y‖2 .

Under H2, [18, Theorem 2.1.8] shows that U has a unique minimizer x⋆ ∈ R
d. If in addition

H1 holds, then [18, Theorem 2.1.12, Theorem 2.1.9] shows that for all x, y ∈ R
d:

〈∇U(y)−∇U(x), y − x〉 ≥ (κ/2) ‖y − x‖2 + 1

m+ L
‖∇U(y)−∇U(x)‖2 , (4)

〈∇U(y)−∇U(x), y − x〉 ≥ m ‖y − x‖2 , (5)

where

κ =
2mL

m+ L
. (6)

Note that H1 and (5) imply that L ≥ m. We first obtain the geometric rate of convergence
to stationarity of the semi-group in Wasserstein distance. It is worthwhile to note that these
bounds do not depend on the dimension d.

Theorem 1. Assume H1 and H2.

(i) For all p ≥ 2, probability measures µ and ν ∈ Pp(R
d) and t ≥ 0,

Wp(µPt, νPt) ≤ e−mtWp(µ, ν)

(ii) The stationary distribution π satisfies
∫

Rd

‖x− x⋆‖2 π(dx) ≤ d/m . (7)
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Proof. Most of the statement is well known; see [4] and the references therein. Nevertheless for
completeness, we provide the proof in Section 4.1.

Let (γk)k≥1 be a sequence of positive and non-increasing step sizes and for n, p ∈ N, denote
by

Γn,p
def

=

p
∑

k=n

γk , Γn = Γ1,n . (8)

For γ > 0, consider the Markov kernel Rγ given for all A ∈ B(Rd) and x ∈ R
d by

Rγ(x,A) =

∫

A

(4πγ)−d/2 exp
(

−(4γ)−1 ‖y − x+ γ∇U(x)‖2
)

dy . (9)

Under H1 Rγ is strongly Feller, irreducible, strongly aperiodic. The sequence (Xn)n≥0 given in
(2) is a Markov chain with respect to the sequence of Markov kernels (Rγn

)n≥1. For p, n ≥ 1,
p ≥ n, define

Qn,p
γ = Rγn

· · ·Rγp
, Qn

γ = Q1,n
γ (10)

with the convention that for n, p ≥ 0, n < p, Qp,n
γ is the identity operator. The stability

of the Euler discretization of a one-dimensional Langevin diffusion with constant step size has
been studied in [21, Section 3]; We generalize these results to multidimensional diffusions and
decreasing stepsizes.

Theorem 2. Assume H1 and H2. For any γ ∈ (0, 2/(m+ L)), Rγ has a unique stationary
distribution πγ . Moreover, for all p ≥ 1, πγ ∈ Pp(R

d) and for all probability measure µ ∈
P2p(R

d), we have for all n ≥ 0:

W2p(µR
n
γ , πγ) ≤ (1− κγ)npW2p(µ, πγ) . (11)

Proof. The proof is postponed to Section 4.2.

We now proceed to establish explicit bounds for W2(µ0Q
n
γ , π), with µ0 ∈ P2(R

d). Since
π is invariant for Pt for all t ≥ 0, it suffices to get some bounds on W2(µ0Q

n
γ , ν0PΓn

), with

ν0 ∈ P2(R
d) and take ν0 = π. To do so, we construct a coupling between the diffusion and the

linear interpolation of the Euler discretization. In the strongly convex case, an obvious candidate
is the synchronous coupling (Yt, Y t)t≥0 for all n ≥ 0 and t ∈ [Γn,Γn+1) by

{

Yt = YΓn
−
∫ t

Γn
∇U(Ys)ds+

√
2(Bt −BΓn

)

Ȳt = ȲΓn
−∇U(ȲΓn

)(t− Γn) +
√
2(Bt −BΓn

) ,
(12)

where (Γn)n≥1 is given in (8). Therefore since for all n ≥ 0, W 2
2 (µ0PΓn

, ν0Q
n
γ ) ≤ E[‖YΓn

−ȲΓn
‖2],

where µ0 and ν0 are the marginals of ζ0, we compute an explicit bound of the Wasserstein distance
between the sequence of distributions (µ0Q

n
γ )n≥0 and the stationary measure π of the Langevin

diffusion (1).

Theorem 3. Assume H1 and H2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 1/(m+L).
Then for all µ0 ∈ P2(R

d) and n ≥ 1,

W 2
2 (µ0Q

n
γ , π) ≤ u(1)

n (γ)W 2
2 (µ0, π) + u(2)

n (γ) , (13)

where

u(1)
n (γ)

def

=

n
∏

k=1

(1 − κγk/2) (14)
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and

u(2)
n (γ)

def
= L2

n
∑

i=1

γ2
i

{

κ−1 + γi
}

(2d+ dL2γi/m+ dL2γ2
i /6)

n
∏

k=i+1

(1− κγk/2) , (15)

where κ is defined in (6) .

Proof. The proof is postponed to Section 4.3.

We now consider stepsizes which goes to 0. Under this additional assumption, we may
establish the convergence of the sequence (µ0Q

n
γ)n≥0 to π.

Corollary 4. Assume H1 and H2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 1/(m+L).
Assume that limk→∞ γk = 0 and limn→+∞ Γn = +∞. Then for all µ0 ∈ P2(R

d),

lim
n→∞

W2(µ0Q
n
γ , π) = 0 .

Proof. The proof is postponed to Section 4.4.

In the case of constant stepsizes γk = γ for all k ≥ 1, we can deduce from Theorem 3, a
bound between π and the stationary distribution πγ of Rγ .

Corollary 5. Assume H1 and H2. Let (γk)k≥1 be a constant sequence γk = γ for all k ≥ 1
with γ1 ≤ 1/(m+ L). Then

W 2
2 (π, πγ) ≤ 2κ−1L2γ

{

κ−1 + γ
}

(2d+ dL2γ/m+ dL2γ2/6) .

Proof. The proof is postponed to Section 4.5.

We can improve these bound under additional regularity assumptions on the potential U .

H3. The potential U is three times continuously differentiable and there exists L̃ such that for
all x, y ∈ R

d:
∥

∥∇2U(x) −∇2U(y)
∥

∥ ≤ L̃ ‖x− y‖ . (16)

Note that under H1 and H3, we have that for all x, y ∈ R
d,

∥

∥∇2U(x)y
∥

∥ ≤ L ‖y‖ ,
∥

∥

∥

~∆(∇U)(x)
∥

∥

∥

2

≤ dL̃2 . (17)

Theorem 6. Assume H1, H2 and H3. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤
1/(m+ L). Then for all µ0 ∈ P2(R

d) and n ≥ 1,

W 2
2 (µ0Q

n
γ , π) ≤ u(1)

n (γ)W 2
2 (µ0, π) + u(3)

n (γ) , (18)

where u
(1)
n is given by (14) and

u(3)
n (γ)

def

=

n
∑

i=1

dγ3
i

{

2L2 + κ−1(L̃2/3 + γiL
4 + 4L4/(3m)) + γiL

4(γi/6 +m−1)
}

n
∏

k=i+1

(1−κγk/2) ,

(19)
where κ is defined in (6) .

Proof. The proof is postponed to Section 4.6.

In the case of constant stepsizes γk = γ for all k ≥ 1, we can deduce from Theorem 6, a
sharper bound between π and the stationary distribution πγ of Rγ .
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Corollary 7. Assume H1 and H2. Let (γk)k≥1 be a constant sequence γk = γ for all k ≥ 1
with γ1 ≤ 1/(m+ L). Then

W 2
2 (π, πγ) ≤ 2κ−1dγ2

{

2L2 + κ−1(L̃2/3 + γL4 + 4L4/(3m)) + γL4(γ/6 +m−1)
}

.

Proof. The proof follows the same line as the proof of Corollary 5 and is omitted.

Let x⋆ be the unique minimizer of U . Since for all y ∈ R
d ‖x− y‖2 ≤ 2(‖x− x⋆‖2+‖x⋆ − y‖2),

using (7), we get:

W 2
2 (δx, π) ≤ 2(‖x− x⋆‖2 + d/m) . (20)

If µ0 ∈ P2(R
d), we have W 2

2 (µ0, π) ≤
∫

µ0(dx)W
2
2 (δx, π). Hence, the right hand side of (13) and

(18) scales linearly with the dimension d. When γk = γ for all k ≥ 1, (14), (15) (19) imply
{

u
(1)
n (γ) = (1− κγ/2)n , u

(2)
n (γ) ≤ 2κ−1γ

{

κ−1 + γ
}

(2d+ dL2γ/m+ dL2γ2/6) ,

u
(3)
n (γ) ≤ 2κ−1dγ2

{

2L2 + κ−1(L̃2/3 + γL4 + 4L4/(3m)) + γL4(γ/6 +m−1)
}

.
(21)

Using this bound, given ǫ > 0, we may determine the smallest number of iterations and an
associated step-size γ, starting from x, to approach the stationary distribution in the Wasserstein
distance W2(δxQ

γ
n, π) with a precision ǫ. Details and further discussions are included in the

supplementary paper [8].
Based on Theorem 3 and Theorem 6, we can obtain explicit bounds for W 2

2 (δxQ
n
γ , π) for all

x ∈ R
d. For simplicity, we consider sequences (γk)k≥1 defined for all k ≥ 1 by γk = γ1k

−α, for
γ1 < 1/(m+ L) and α ∈ (0, 1]. The order of these bounds is given in Table 1 and Table 2, see
[8, Section 1-2] for details. Two regimes can be observed as in stochastic approximation in the
case of Theorem 3.

α ∈ (0, 1) α = 1
Order of convergence O(n−α) O(n−1) for γ1 > 2κ−1 see [8, Section 3]

Table 1: Order of convergence of W2(δxQ
n
γ , π) for γk = γ1k

−α under H1 and H2

α ∈ (0, 1) α = 1
Order of convergence O(n−2α) O(n−2)

Table 2: Order of convergence of W2(δxQ
n
γ , π) for γk = γ1k

−α under H1, H2 and H3

We now consider the fixed horizon setting. Assuming here that the step sizes (γk)k≥1 are
defined for k ≥ 1 by γk = γ1k

−α for α ∈ [0, 1), we determine the value of γ1 minimizing the

upper bound u
(1)
n (γ)W 2

2 (µ0, π) + u
(2)
n (γ). The results are summarized in Table 3, see [8, Section

1-2] for details.

Optimal choice of γ1 Bound on W 2
2 (δxQ

n
γ , π)

α ∈ [0, 1) O(nα−1 log(n)) O(dn−1 log(n))

Table 3: Order of the optimal choice of γ1 for the fixed horizon setting and implied bound on
W 2

2 (δxQ
n
γ , π) based on Theorem 3

Moreover, these bounds for a fixed number of iterations implies using the doubling trick (see
[14]) an anytime algorithm which guarantees for all n ≥ 1 and x ∈ R

d that W2(δxQ
n
γ , π) is

O((log(n)n−1)1/2) or O((log(n)n−1).
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Optimal choice of γ1 Bound on W 2
2 (δxQ

n
γ , π)

α ∈ [0, 1) O(nα−1 log(n)) O(dn−2 log2(n))

Table 4: Order of the optimal choice of γ1 for the fixed horizon setting and implied bound on
W 2

2 (δxQ
n
γ , π) based on Theorem 6

2.1 Mean square error and concentration

Let be f : Rd → R and (Xn)n≥0 the Euler discretization of the Langevin diffusion. In this section
we study the approximation of

∫

Rd f(y)π(dy) by the weighted average estimator

π̂N
n (f) =

N+n
∑

k=N+1

ωN
k,nf(Xk) , ωN

k,n = γk+1Γ
−1
N+2,N+n+1 . (22)

where N ≥ 0 is the length of the burn-in period, n ≥ 1 is the number of samples, and for n, p ∈ N,
Γn,p is given by (8). We restrict the discussion to Lipschitz functions f . In all this section, Px

and Ex denote the probability and the expectation respectively, induced on ((Rd)N,B(Rd)N) by
the Markov chain (Xn)n≥0 started at x ∈ R

d. We first compute an explicit bounds for the Mean
Squared Error (MSE) of this estimator defined by:

MSEf (N,n) = Ex

[

∣

∣π̂N
n (f)− π(f)

∣

∣

2
]

=
{

Ex[π̂
N
n (f)]− π(f)

}2
+Varx

{

π̂N
n (f)

}

. (23)

We first obtain an elementary bound for the bias. For all k ∈ {N + 1, . . . , N + n}, let ξk be
the optimal transference plan between δxQ

k
γ and π for W2. Then by the Jensen inequality and

because f is Lipschitz, we have:

(

Ex[π̂
N
n (f)]− π(f)

)2
=

(

N+n
∑

k=N+1

ωN
k,n

∫

Rd×Rd

{f(z)− f(y)}ξk(dz, dy)
)2

≤ ‖f‖2Lip
N+n
∑

k=N+1

ωN
k,n

∫

Rd×Rd

‖z − y‖2 ξk(dz, dy) .

Using Theorem 3, we end up with the following bound.

Proposition 8. Assume H 1 and H 2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤
1/(m + L). Let x⋆ be the unique minimizer of U . Let (Xn)n≥0 be given by (2) and started at
x ∈ R

d. Then for all n,N ≥ 0 and Lipschitz function f : Rd → R:

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ ‖f‖2Lip
N+n
∑

k=N+1

ωN
k,n

{

2(‖x− x⋆‖2 + d/m)u
(1)
k (γ) + wk(γ)

}

,

where u
(1)
n (γ) is given in (14) and wn(γ) is equal to u

(2)
n (γ) defined by (15) and to u

(3)
n (γ), defined

by (19), if H3 holds.

Consider now the variance term. To control this term, we adapt the proof of [16, Theorem
2] for homogeneous Markov chain to our inhomogeneous setting, and we have:

Theorem 9. Assume H1 and H2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+L).
Then for all N ≥ 0, n ≥ 1 and Lipschitz functions f : Rd → R, we get

Varx
{

π̂N
n (f)

}

≤ 8κ−2 ‖f‖2Lip Γ−1
N+2,N+n+1vN,n(γ) ,
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where
vN,n(γ)

def

=
{

1 + Γ−1
N+2,N+n+1(κ

−1 + 2/(m+ L))
}

. (24)

Proof. The proof is postponed to Section 4.7.

It is worth to observe that this bound is independent from the dimension. We may now discuss
the bounds on the MSE (obtained by combining the bounds for the squared bias Proposition 8
and the variance Theorem 9) for step sizes given for k ≥ 1 by γk = γ1k

−α where α ∈ [0, 1]
and γ1 < 1/(m + L). Details of these calculations are included in the supplementary paper [8,
Section 5]. The order of the bounds (up to numerical constants) of the MSE are summarized
in Table 5 as a function of γ1, n and N . If the total number of iterations n + N is held fixed

Bound for the MSE
α = 0 γ1 + (γ1n)

−1 exp(−κγ1N/2)
α ∈ (0, 1/2) γ1n

−α + (γ1n
1−α)−1 exp(−κγ1N

1−α/(2(1− α)))

α = 1/2 γ1 log(n)n
−1/2 + (γ1n

1/2)−1 exp(−κγ1N
1/2/4)

α ∈ (1/2, 1) nα−1
{

γ1 + γ−1
1 exp(−κγ1N

1−α/(2(1− α)))
}

α = 1 log(n)−1
{

γ1 + γ−1
1 N−γ1κ/2

}

Table 5: Bound for the MSE for γk = γ1k
−α for fixed γ1 and N under H1 and H2

Bound for the MSE
α = 0 γ2

1 + (γ1n)
−1 exp(−κγ1N/2)

α ∈ (0, 1/3) γ2
1n

−2α + (γ1n
1−α)−1 exp(−κγ1N

1−α/(2(1− α)))

α = 1/3 γ2
1 log(n)n

−2/3 + (γ1n
2/3)−1 exp(−κγ1N

1/2/4)

α ∈ (1/3, 1) nα−1
{

γ2
1 + γ−1

1 exp(−κγ1N
1−α/(2(1− α)))

}

α = 1 log(n)−1
{

γ2
1 + γ−1

1 N−γ1κ/2
}

Table 6: Bound for the MSE for γk = γ1k
−α for fixed γ1 and N under H1, H2 and H3

(fixed horizon setting), as in Section 2, we may optimize the value of the step size γ1 but also of
the burn-in period N to minimize the upper bound of the MSE. The order (in n) for different
values of α ∈ [0, 1] are summarized in Table 8 and Table 7 (we display the order in n but not
the constants, which are quite involved and not overly informative).

We observe two differents bounds based on Theorem 3 and Theorem 6. Let us discuss first,
the bounds obtained by the last one. It appears that, for any α ∈ [0, 1/3), we can always achieved

the order n−2/3 by choosing appropriately γ1 and N (for α = 1/3 we have only log1/3(n)n−2/3).
The worst case is for α ∈ (1/3, 1], where in fact the best strategy is to take N = 0 and the
largest possible value for γ1 = 1/(m+ L). Finally, we note that from the explicit expression of
the bound in [8, Section 5.2], that constant step sizes (α = 0) are optimal. Finally, we mention
that the bounds for α ∈ [0, 1/2) for a fixed number of iterations implies using the doubling trick
(see [14]) an anytime algorithm which guarantees for all n ≥ 1, a MSE of order O(n−2/3).

Now let us discuss the bounds based on Theorem 3. This time for any α ∈ [0, 1/2), we can
always achieved the order n−1/2 by choosing appropriately γ1 and N (for α = 1/2 we have only
log(n)n−1/2). For α ∈ (1/2, 1], the best strategy is to take N = 0 and the largest possible value
for γ1 = 1/(m+ L). Finally, we note that from the explicit expression of the bound in [8], that
constant step sizes (α = 0) are again optimal.

We can also follow the proof of [16, Theorem 5] to establish an exponential deviation inequality
for π̂N

n (f)− Ex[π̂
N
n (f)] given by (22)

8



Optimal choice of γ1 Optimal choice of N Bound for the MSE

α = 0 n−1/3 n1/3 n−2/3

α ∈ (0, 1/2) nα−1/3 n(1/3−α)/(1−α) n−2/3

α = 1/2 (log(n))−1/3 log1/2(n) log1/3(n)n−2/3

α ∈ (1/2, 1) 1/(m+ L) 0 n1−α

α = 1 1/(m+ L) 0 log(n)

Table 7: Bound for the MSE for γk = γ1k
−α for fixed n under H1, H2 and H3

Optimal choice of γ1 Optimal choice of N Bound for the MSE

α = 0 n−1/2 n1/2 n−1/2

α ∈ (0, 1/2) nα−1/2 n(1/2−α)/(1−α) n−1/2

α = 1/2 (log(n))−1/2 log(n) log(n)n−1/2

α ∈ (1/2, 1) 1/(m+ L) 0 n1−α

α = 1 1/(m+ L) 0 log(n)

Table 8: Bound for the MSE for γk = γ1k
−α for fixed n under H1 and H2

Theorem 10. Assume H1 and H2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+
L). Let (Xn)n≥0 be given by (2) and started at x ∈ R

d. Then for all N ≥ 0, n ≥ 1, r > 0 and
Lipschitz functions f : Rd → R:

Px

[

π̂N
n (f) ≥ Ex[π̂

N
n (f)] + r

]

≤ exp

(

−r2κ2ΓN+2,N+n+1

16 ‖f‖2Lip vN,n(γ)

)

.

Proof. Using the Markov inequality and Proposition 25, for all λ > 0, we have:

Px

[

π̂N
n (f) ≥ Ex[π̂

N
n (f)] + r

]

≤ exp
(

−λr + 4κ−2λ2 ‖f‖2Lip Γ−1
N+2,N+n+1vN,n(γ)

)

.

Then the result follows from taking λ = (rκ2ΓN+2,N+n+1)/(8 ‖f‖2Lip vN,n(γ)).

If we apply this result to the sequence (γk)k≥1 defined for all k ≥ 1 by γk = γ1k
−α, for

α ∈ [0, 1], we end up with a concentration of order exp(−n1−α) for α ∈ [0, 1) and n−1 for α = 1.

3 Numerical experiments

Consider a binary regression set-up in which the binary observations (responses) (Y1, . . . , Yp) are
conditionally independent Bernoulli random variables with success probability ̺(βββTXi), where
̺ is the logistic function defined for z ∈ R by ̺(z) = ez/(1+ ez) and Xi and βββ are d dimensional
vectors of known covariates and unknown regression coefficient, respectively. The prior distri-
bution for the parameter βββ is a zero-mean Gaussian distribution with covariance matrix Σ. The
posterior density distribution of βββ is up to a proportionality constant given by

πβββ(βββ|((Xi, Yi))1≤i≤p) ∝ exp

(

p
∑

i=1

Yiβββ
TXi − log(1 + eβββ

TXi)− (1/2)βββTΣ−1βββ

)

.

Bayesian inference for the logistic regression model has long been recognized as a numerically
involved problem, due to the analytically inconvenient form of the model’s likelihood function.
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Several algorithms have been proposed, trying to mimick the data-augmentation (DA) approach
of [1] for probit regression; see [15], [9] and [10]. Recently, a very promising DA algorithm has
been proposed in [20], using the Polya-Gamma distribution in the DA part. This algorithm has
been shown to be uniformly ergodic for the total variation by [7, Proposition 1], which provides
an explicit expression for the ergodicity constant. This constant is exponentially small in the
dimension of the parameter space and the number of samples (it is likely however that this
constant is very conservative). Moreover, the complexity of the augmentation step is cubic in
the dimension, which prevents from using this algorithm when the dimension of the regressor is
large.

We apply ULA to sample from the posterior distribution πβββ(·|(Xi, Yi)1≤i≤p). The gradient
of its log-density may be expressed as

∇ log{πβββ(βββ|(Xi, Yi)1≤i≤p)} =

p
∑

i=1

YiXi −
Xi

1 + e−βββTXi
− Σ−1βββ ,

Therefore− log πβββ(·|(Xi, Yi)1≤i≤p) is strongly convexH2 withm = λ−1
max(Σ) and satisfiesH1 with

L = (1/4)max1≤i≤p{‖Xi‖+λ−1
min(Σ)}, where λmin(Σ) and λmax(Σ) are the minimal and maximal

eigenvalues of Σ, respectively. To assess the proposed algorithm, we first compare the histograms
given by ULA and the Pòlya-Gamma Gibbs sampling from [20]. For this, we take d = 5, p = 100,
generate synthetic data (Yi)1≤i≤p and (Xi)1≤i≤p, and set Σβββ = (

∑p
i=1 ‖Xi‖2)(dp)−1 Id. We

produce 107 samples from the Pòlya-Gamma sampler using the R package BayesLogit [24]. Next,
we make 103 runs of the Euler approximation scheme with n = 106 effective iterations, with a
constant sequence (γk)k≥1, γk = 10(κn1/2)−1 for all k ≥ 0 and a burn-in period N = n1/2. The
plot of the histogram of the Pólya-Gamma Gibbs sampler for one component, the corresponding
mean of the obtained histograms for ULA and the quantiles at 95% can be found in Figure 1.
The same procedure is also applied with the decreasing step size sequence (γk)k≥1 defined by
γk = γ1k

−1/2, with γ1 = 10(κ log(n)1/2)−1, and for the burn in period N = log(n), see also
Figure 1. In addition, we also compare the Pólya-Gamma Gibbs sampler, MALA and ULA on

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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quantile at 95%
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Polya−Gamma
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Figure 1: Empirical distribution comparison between the Polya-Gamma Gibbs Sampler and
ULA. Left panel: constant step size γk = γ1 for all k ≥ 1; right panel: decreasing step size
γk = γ1k

−1/2 for all k ≥ 1

four real data sets, which are summarized in Table 9. Note that for the Australian credit data set,
the ordinal covariates have been stratified by dummy variables. Furthermore, we normalized the
data sets and consider the Zellner prior setting Σ−1 = (π2p/3)Σ−1

X where ΣX = p−1
∑p

i=1 XiX
T
i

; see [22], [13] and the references therein. Also, we apply a pre-conditioned version of MALA and

ULA, targeting the probability density π̃βββ(·) ∝ πβββ(Σ
1/2
X ·). Then, we obtain samples from πβββ by

post-multiplying the obtained draws by Σ
1/2
X . For each data sets, 100 runs of the Polya-Gamma
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Data set
Dimensions

Observations p Covariates d

German credit 1 1000 25
Heart disease 2 270 14

Australian credit3 690 35
Prima indian diabetes4 768 9

Table 9: Dimension of the data sets

0.67

0.675

0.68

Polya−Gamma MALA ULA

−0.285

−0.28

−0.275

Polya−Gamma MALA ULA

−0.54

−0.53

−0.52

Polya−Gamma MALA ULA

−0.253
−0.252
−0.251
−0.25

−0.249

Polya−Gamma MALA ULA

Figure 2: Upper left: German credit data set. Upper right: Australian credit data set. Lower
left: Heart disease data set. Lower right: Prima Indian diabetes data set

Gibbs sampler (105 iterations per run), and 100 runs of MALA and ULA (106 iterations per run)
have been performed. Despite the fact that longer runs are carried out, the computational time
of ULA is still two orders of magnitude lower than the Pólya-Gamma simulator. For MALA,
the step-size is chosen so that the acceptance probability in stationarity is approximately equal
to 0.5. For ULA, we choose constant step-sizes γ = 5 × 10−3 for all the data sets. We display
the boxplots of the estimators for the mean of one component of βββ in Figure 2. Note that there
are some discrepancies between the posterior mean estimators obtained using either the DA,
MALA and ULA. These differences are of order 10−3 and are likely to be due to accumulations
of numerical errors. These differences are negligible compared to the posterior variance of these
estimators, which is of order 10−1. These results all imply that ULA is a much simpler and faster
alternative to the Polya-Gamma Gibbs sampler and MALA algorithm.

4 Proofs

Let (Ft)t≥0 be the filtration associated with (Bt)t≥0 with F0, the σ-field generated by (Y0, Y 0).

4.1 Proof of Theorem 1

We preface the proof by a technical Lemma. Denote by x⋆ the unique minimizer of U . The
generator A associated with (Pt)t≥0 is given, for all f ∈ C2(Rd) and x ∈ R

d, by:

A f(x) = −〈∇U(x),∇f(x)〉 +∆f(x) . (25)

1http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
2http://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)
3http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
4http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
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Lemma 11. Assume H1 and H2.

(i) For all t ≥ 0 and x ∈ R
d,

Ex

[

‖Yt − x⋆‖2
]

≤ ‖x− x⋆‖2 e−2mt +
d

m
(1− e−2mt) .

(ii) For all t ≥ 0 and x ∈ R
d,

Ex

[

‖Yt − x‖2
]

≤ dt(2 + L2t2/3) + (3/2)t2L2 ‖x− x⋆‖2 .

Proof. (i) Denote for all x ∈ R
d by V (x) = ‖x− x⋆‖2. Under H1 supt∈[0,T ] Ex[‖Yt‖

2
] < +∞

for all T ≥ 0. Therefore, the process
(

V (Yt)− V (x) −
∫ t

0 A V (Ys)ds
)

t≥0
is a (Ft)t≥0-martingale

under Px. Since ∇U(x⋆) = 0 and using (5), we have

A V (x) = 2 (−〈∇U(x) −∇U(x⋆), x − x⋆〉+ d) ≤ 2 (−mV (x) + d) . (26)

Denote for all t ≥ 0 and x ∈ R
d by v(t, x) = PtV (x). Then we have, ∂v(t, x)/∂t = PtA V (x).

Using (26), we get

∂v(t, x)

∂t
= PtA V (x) ≤ −2mPtV (x) + 2d = −2mv(t, x) + 2d ,

and the proof follows from the Grönwall inequality.

(ii) Denote for all x, y ∈ R
d, Ṽx(y) = ‖y − x‖2. therefore the process (Ṽx(Yt) − Ṽx(x) −

∫ t

0 A Ṽx(Ys)ds)t≥0, is a (Ft)t≥0-martingale under Px. Denote for all t ≥ 0 and x ∈ R
d by

ṽ(t, x) = PtṼx(x). Then we get,
∂ṽ(t, x)

∂t
= PtA Ṽx(x) . (27)

By (5), we have for all y ∈ R
d,

A Ṽx(y) = 2 (−〈∇U(y), y − x〉+ d) ≤ 2
(

−mṼx(y) + d− 〈∇U(x), y − x〉
)

. (28)

Using (27), this inequality and that Ṽx is positive, we get

∂ṽ(t, x)

∂t
= PtA Ṽx(x) ≤ 2

(

d−
∫

Rd

〈∇U(x), y − x〉Pt(x, dy)

)

. (29)

By the Cauchy-Schwarz inequality, ∇U(x⋆) = 0, (1) and the Jensen inequality, we have,

|Ex [〈∇U(x), Yt − x〉]| ≤ ‖∇U(x)‖ ‖Ex [Yt − x]‖

≤ ‖∇U(x)‖
∥

∥

∥

∥

Ex

[
∫ t

0

{∇U(Ys)−∇U(x⋆)} ds
]∥

∥

∥

∥

≤
√
t ‖∇U(x)−∇U(x⋆)‖

(
∫ t

0

Ex

[

‖∇U(Ys)−∇U(x⋆)‖2
]

ds

)1/2

.
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Furthermore, by H1 and Lemma 11-(i), we have

∣

∣

∣

∣

∫

Rd

〈∇U(x), y − x〉Pt(x, dy)

∣

∣

∣

∣

≤
√
tL2 ‖x− x⋆‖

(
∫ t

0

Ex

[

‖Ys − x⋆‖2
]

ds

)1/2

≤
√
tL2 ‖x− x⋆‖

(

1− e−2mt

2m
‖x− x⋆‖2 + 2tm+ e−2mt − 1

2m
(d/m)

)1/2

≤ L2 ‖x− x⋆‖ (t ‖x− x⋆‖+ t3/2d1/2) , (30)

where we used for the last line that by the Taylor theorem with remainder term, for all s ≥ 0,
(1−e−2ms)/(2m) ≤ s and (2ms+e−2ms−1)/(2m) ≤ ms2, and the inequality

√
a+ b ≤ √

a+
√
b.

Plugging (30) in (29), and since 2 ‖x− x⋆‖ t3/2d1/2 ≤ t ‖x− x⋆‖2 + t2d, we get

∂ṽ(t, x)

∂t
≤ 2d+ 3L2t ‖x− x⋆‖2 + L2t2d

Since ṽ(0, x) = 0, the proof is completed by integrating this result.

Proof of Theorem 1. (i) Consider the following SDE in R
d × R

d:

{

dYt = −∇U(Yt)dt+
√
2dBt ,

dỸt = −∇U(Ỹt)dt+
√
2dBt ,

(31)

where (Y0, Ỹ0) is some coupling between µ and ν. Since µ and ν are in Pp(R
d) and ∇U is

Lipschitz, then by [17, Theorem 2.5, Theorem 2.9, Chapter 5], this SDE has a unique strong
solution (Yt, Ỹt)t≥0 associated with (Bt)t≥0. Moreover since (Yt, Ỹt)t≥0 is a solution of (31),

∥

∥

∥
Yt − Ỹt

∥

∥

∥

p

=
∥

∥

∥
Y0 − Ỹ0

∥

∥

∥

p

− p

∫ t

0

∥

∥

∥
Ys − Ỹs

∥

∥

∥

p−2 〈

∇U(Ys)−∇U(Ỹs), Ys − Ỹs

〉

ds ,

which implies using (5) and Grönwall’s inequality that

∥

∥

∥
Yt − Ỹt

∥

∥

∥

p

≤
∥

∥

∥
Y0 − Ỹ0

∥

∥

∥

p

−mp

∫ t

0

∥

∥

∥
Ys − Ỹs

∥

∥

∥

p

ds ≤
∥

∥

∥
Y0 − Ỹ0

∥

∥

∥

p

e−mpt .

For all t ≥ 0, the law of (Yt, Ỹt) is a coupling between µPt and νPt. Therefore by definition of
Wp, Wp(µPt, νPt) ≤ E[‖Yt − Ỹt‖p]1/p showing (i).

(ii) Set V (x) = ‖x− x⋆‖2. By Jensen’s inequality and Lemma 11-(i), for all c > 0 and t > 0,
we get

π(V ∧ c) = πPt(V ∧ c) ≤ π(PtV ∧ c) =

∫

π(dx) c ∧
{

‖x− x∗‖2e−2mt +
d

m
(1− e−2mt)

}

≤ π(V ∧ c)e−2mt + (1− e−2mt)d/m .

Taking the limit as t → +∞, we get π(V ∧ c) ≤ d/m. Using the monotone convergence theorem,
taking the limit as c → +∞, we finally obtain (7).
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4.2 Proof of Theorem 2

We preface the proof by a Lemma.

Lemma 12. Assume H1 and H2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+L)
and p ∈ N, p ≥ 1. Then for all µ0, ν0 ∈ P2p(R

d) and ℓ ≥ n ≥ 1,

W 2p
2p (µ0Q

n,ℓ
γ , ν0Q

n,ℓ
γ ) ≤

{

ℓ
∏

k=n

(1− κγk)

}p

W 2p
2p (µ0, ν0) ;

Proof. Let ζ0 be an optimal transference plan of µ0 and ν0 and (Zk)k≥1 be a sequence of i.i.d. d-
dimensional Gaussian random variables. We consider the processes (X1

k , X
2
k)k≥0 with initial

distributions equal to ζ0 and defined for k ≥ 0 by

Xj
k+1 = Xj

k − γk+n∇U(Xj
k) +

√

2γk+nZk+1 j = 1, 2 . (32)

Using (32), we get for any p ≥ n ≥ 0. W 2p
2p (µ0Q

n,ℓ
γ , ν0Q

n,ℓ
γ ) ≤ E

[

∥

∥X1
ℓ −X2

ℓ

∥

∥

2p
]

and (4) implies

for k ≥ n− 1,

∥

∥X1
k+1 −X2

k+1

∥

∥

2
=
∥

∥X1
k −X2

k

∥

∥

2
+ γ2

n+k+1

∥

∥∇U(X1
k)−∇U(X2

k)
∥

∥

2

− 2γn+k

〈

X1
k −X2

k ,∇U(X1
k)−∇U(X2

k)
〉

≤ (1− κγn+k+1)
∥

∥X1
k −X2

k

∥

∥

2
.

Therefore by a straightforward induction we get for all ℓ ≥ n,

∥

∥X1
ℓ −X2

ℓ

∥

∥

2 ≤
ℓ
∏

k=n

(1− κγk)
∥

∥X1
0 −X2

0

∥

∥

2
.

Proof of Theorem 2. Let µ ∈ P2p(R
d) and p ≥ 1. It is straightforward that for all n ≥ 0,

µRn
γ ∈ P2p(R

d). Then, by Lemma 12 is a strict contraction in (P2p(R
d),W2p) and there is a

unique fixed point πγ which is the unique invariant distribution. Equation (11) follows from
Lemma 12.

4.3 Proof of Theorem 3

We preface the proof by a technical Lemma.

Lemma 13. Assume H1 and H2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 1/(m+L).
Let ζ0 ∈ P2(R

d × R
d), (Yt, Y t)t≥0 such that (Y0, Y 0) is distributed according to ζ0 and given by

(12). Then almost surely for all n ≥ 0 and ǫ > 0,

∥

∥YΓn+1
− Y Γn+1

∥

∥

2 ≤ {1− γn+1 (κ− 2ǫ)}
∥

∥YΓn
− Y Γn

∥

∥

2
(33)

+ (2γn+1 + (2ǫ)−1)

∫ Γn+1

Γn

‖∇U(Ys)−∇U(YΓn
)‖2 ds ,

E
FΓn

[

∥

∥YΓn+1
− Y Γn+1

∥

∥

2
]

≤ {1− γn+1 (κ− 2ǫ)}
∥

∥YΓn
− Y Γn

∥

∥

2
(34)

+ L2γ2
n+1(1/(4ǫ) + γn+1)

(

2d+ L2γn+1 ‖YΓn
− x⋆‖2 + dL2γ2

n+1/6
)

.
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Proof. Let n ≥ 0 and ǫ > 0, and set Θn = YΓn
− Y Γn

. We first show (33).
By definition we have:

‖Θn+1‖2 = ‖Θn‖2+
∥

∥

∥

∥

∥

∫ Γn+1

Γn

{

∇U(Ys)−∇U(Y Γn
)
}

ds

∥

∥

∥

∥

∥

2

−2γn+1

〈

Θn,∇U(YΓn
)−∇U(Y Γn

)
〉

− 2

∫ Γn+1

Γn

〈Θn, {∇U(Ys)−∇U(YΓn
)}〉ds . (35)

Young’s inequality and Jensen’s inequality imply

∥

∥

∥

∥

∥

∫ Γn+1

Γn

{

∇U(Ys)−∇U(Y Γn
)
}

ds

∥

∥

∥

∥

∥

2

≤ 2γ2
n+1

∥

∥∇U(YΓn
)−∇U(Y Γn

)
∥

∥

2

+ 2γn+1

∫ Γn+1

Γn

‖∇U(Ys)−∇U(YΓn
)‖2 ds .

Using (4), γ1 ≤ 1/(m+ L) and (γk)k≥1 is nonincreasing, (35) becomes

‖Θn+1‖2 ≤ {1− γn+1κ} ‖Θn‖2 + 2γn+1

∫ Γn+1

Γn

‖∇U(Ys)−∇U(YΓn
)‖2 ds

− 2

∫ Γn+1

Γn

〈Θn, {∇U(Ys)−∇U(YΓn
)}〉ds . (36)

Using the inequality | 〈a, b〉 | ≤ ǫ‖a‖2 + (4ǫ)−1‖b‖2 concludes the proof of (33).
We now prove (34). Note that (33) implies that

E
FΓn

[

‖Θn+1‖2
]

≤ {1− γn+1(κ− 2ǫ)} ‖Θn‖2

+ (2γn+1 + (2ǫ)−1)

∫ Γn+1

Γn

E
FΓn

[

‖∇U(Ys)−∇U(YΓn
)‖2
]

ds . (37)

By H1, the Markov property of (Yt)t≥0 and Lemma 11-(ii), we have

∫ Γn+1

Γn

E
FΓn

[

‖∇U(Ys)−∇U(YΓn
)‖2
]

ds

≤ L2
(

dγ2
n+1 + dL2γ4

n+1/12 + (1/2)L2γ3
n+1 ‖YΓn

− x⋆‖2
)

.

The proof is then concluded plugging this bound in (37) .

Proof of Theorem 3. Let ζ0 be an optimal transference plan of µ0 and π. Let (Yt, Y t)t≥0 with
(Y0, Y 0) distributed according to ζ0 and defined by (12). By definition of W2 and since for all

t ≥ 0, π is invariant for Pt, W
2
2 (µ0Q

n, π) ≤ Eζ0

[

∥

∥YΓn
− Y Γn

∥

∥

2
]

. Lemma 13-(34) with ǫ = κ/4,

a straightforward induction and Lemma 11-(i) imply for all n ≥ 0

Eζ0

[

∥

∥YΓn
− Y Γn

∥

∥

2
]

≤ u(1)
n (γ)Eζ0

[

∥

∥Y0 − Y 0

∥

∥

2
]

+An(γ) , (38)
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where (u
(1)
n (γ))n≥1 is given by (14), and

An(γ)
def

= L2
n
∑

i=1

γ2
i

{

κ−1 + γi
}

(2d+ dL2γ2
i /6)

n
∏

k=i+1

(1− κγk/2)

+ L4
n
∑

i=1

δiγ
3
i

{

κ−1 + γi
}

n
∏

k=i+1

(1 − κγk/2)

with
δi = e−2mΓi−1Eζ0

[

‖Y0 − x⋆‖2
]

+ (1 − e−2mΓi−1)(d/m) . (39)

Then the proof follows since Y0 is distributed according to π and by (7), which shows that for
all i ∈ {1, · · · , n}, δi ≤ d/m.

4.4 Proof of Corollary 4

Lemma 14. Let (γk)k≥1 be a sequence of nonincreasing real numbers, ̟ > 0 and γ1 < ̟−1.
Then for all n ≥ 0, j ≥ 1 and ℓ ∈ {1, . . . , n+ 1},

n+1
∑

i=1

n+1
∏

k=i+1

(1−̟γk) γ
j
i ≤

n+1
∏

k=ℓ

(1−̟γk)

ℓ−1
∑

i=1

γj
i +

γj−1
ℓ

̟
.

Proof. Let ℓ ∈ {1, . . . , n+ 1}. Since (γk)k≥1 is non-increasing,

n+1
∑

i=1

n+1
∏

k=i+1

(1−̟γk) γ
j
i =

ℓ−1
∑

i=1

n+1
∏

k=i+1

(1−̟γk) γ
j
i +

n+1
∑

i=ℓ

n+1
∏

k=i+1

(1−̟γk) γ
j
i

≤
n+1
∏

k=ℓ

(1 −̟γk)
ℓ−1
∑

i=1

γj
i + γj−1

ℓ

n+1
∑

i=ℓ

n+1
∏

k=i+1

(1−̟γk) γi

≤
n+1
∏

k=ℓ

(1 −̟γk)

ℓ−1
∑

i=1

γj
i +

γj−1
ℓ

̟
.

Proof of Corollary 4. By Theorem 3, it suffices to show that u
(1)
n and u

(2)
n , defined by (14)

and (15) respectively, goes to 0 as n → +∞. Using the bound 1 + t ≤ et for t ∈ R, and

limn→+∞ Γn = +∞, we have limn→+∞ u
(1)
n = 0. Now to show that limn→+∞ u

(2)
n = 0, a sufficient

condition since (γk)k≥0 is nonincreasing, is that limn→+∞

∑n
i=1

∏n
k=i+1 (1− κγk/2)γ

2
i = 0. But

since (γk)k≥1 is nonincreasing, there exists c ≥ 0 such that cΓn ≤ n−1 and by Lemma 14 applied
with ℓ = ⌊cΓn⌋ the integer part of cΓn:

n
∑

i=1

n
∏

k=i+1

(1− κγk/2)γ
2
i ≤ 2γ⌊cΓn⌋/κ+ exp

(

−κΓn(1− Γ−1
n Γ⌊cΓn⌋)/2

)

⌊cΓn⌋−1
∑

i=1

γi . (40)

Since limk→+∞ γk = 0, by the Cesáro theorem, limn→+∞ n−1Γn = 0. Therefore since limn→+∞ Γn =
+∞, limn→+∞(Γn)

−1Γ⌊cΓn⌋ = 0, and the conclusion follows from combining in (40), this limit,

limk→+∞ γk = 0, limn→+∞ Γn = +∞ and
∑⌊cΓn⌋−1

i=1 γi ≤ cγ1Γn.
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4.5 Proof of Corollary 5

Since by Theorem 2, for all x ∈ R
d, (δxR

n
γ )n≥0 converges to πγ as n → ∞ in (P2(R

d),W2), the
proof then follows from Theorem 3 and Lemma 14 applied with ℓ = 1.

4.6 Proofs of Theorem 6

Lemma 15. Assume H1, H2 and H3. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤
1/(m + L). and ζ0 ∈ P2(R

d × R
d). Let (Yt, Y t)t≥0 be defined by (12) such that (Y0, Y 0) is

distributed according to ζ0. Then for all n ≥ 0 and ǫ > 0, almost surely

E
FΓn

[

∥

∥YΓn+1
− Y Γn+1

∥

∥

2
]

≤ {1− γn+1 (κ− 2ǫ)}
∥

∥YΓn
− Y Γn

∥

∥

2
(41)

+ γ3
n+1

{

d(2L2 + ǫ−1(L̃2/12 + γn+1L
4/4) + γ2

n+1L
4/6) + L4(ǫ−1/3 + γn+1) ‖YΓn

− x⋆‖2
}

.

Proof. Let n ≥ 0 and ǫ > 0, and set Θn = YΓn
− Y Γn

. Using Itô’s formula, we have for all
s ∈ [Γn,Γn+1),

∇U(Ys)−∇U(YΓn
) =

∫ s

Γn

{

∇2U(Yu)∇U(Yu) + ~∆(∇U)(Yu)
}

du+
√
2

∫ s

Γn

∇2U(Yu)dBu . (42)

Since Θn is FΓn
-measurable and (

∫ s

0 ∇2U(Yu)dBu)s∈[0,Γn+1] is a (Fs)s∈[0,Γn+1]-martingale under
H1, by (42) we have:

∣

∣E
FΓn [〈Θn,∇U(Ys)−∇U(YΓn

)〉]
∣

∣

=

∣

∣

∣

∣

〈

Θn,E
FΓn

[
∫ s

Γn

{

∇2U(Yu)∇U(Yu) + ~∆(∇U)(Yu)
}

du

]〉∣

∣

∣

∣

Combining this equality and | 〈a, b〉 | ≤ ǫ‖a‖2 + (4ǫ)−1‖b‖2 in (36) we have

E
FΓn

[

‖Θn+1‖2
]

≤ {1− γn+1(κ− 2ǫ)} ‖Θn‖2 + 2γn+1E
FΓn

[

∫ Γn+1

Γn

‖∇U(Ys)−∇U(YΓn
)‖2 ds

]

+ (2ǫ)−1

∫ Γn+1

Γn

∥

∥

∥

∥

E
FΓn

[
∫ s

Γn

{

∇2U(Yu)∇U(Yu) + (1/2)~∆(∇U)(Yu)
}

du

]∥

∥

∥

∥

2

ds . (43)

We now separately bound the two last terms of the right hand side. By H1, the Markov property
of (Yt)t≥0 and Lemma 11-(ii), we have

∫ Γn+1

Γn

E
FΓn

[

‖∇U(Ys)−∇U(YΓn
)‖2
]

ds

≤ L2
(

dγ2
n+1 + dL2γ4

n+1/12 + (1/2)L2γ3
n+1 ‖YΓn

− x⋆‖2
)

. (44)
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Also by (17), we get using ∇U(x⋆) = 0, Jensen’s inequality and Fubini’s theorem,

A
def

=

∫ Γn+1

Γn

∥

∥

∥

∥

E
FΓn

[
∫ s

Γn

∇2U(Yu)∇U(Yu) + (1/2)~∆(∇U)(Yu)du

]∥

∥

∥

∥

2

ds

≤
∫ Γn+1

Γn

(s− Γn)

∫ s

Γn

E
FΓn

[

∥

∥

∥

{

∇2U(Yu)∇U(Yu) + (1/2)~∆(∇U)(Yu)
}∥

∥

∥

2
]

du ds

≤ 2

∫ Γn+1

Γn

(s− Γn)

∫ s

Γn

E
FΓn

[

∥

∥∇2U(Yu)∇U(Yu)
∥

∥

2
+ (1/4)

∥

∥

∥

~∆(∇U)(Yu)
∥

∥

∥

2
]

du ds

≤ 2

∫ Γn+1

Γn

(s− Γn)L
4

∫ s

Γn

E
FΓn

[

‖Yu − x⋆‖2
]

du ds+ γ3
n+1dL̃

2/6 . (45)

By Lemma 11-(i), the Markov property and for all t ≥ 0, 1−e−t ≤ t, we have for all s ∈ [Γn,Γn+1],

∫ s

Γn

E
FΓn

[

‖Yu − x⋆‖2
]

du ≤ (2m)−1(1− e−2m(s−Γn)) ‖YΓn
− x⋆‖2 + d(s− Γn)

2 .

Using this inequality in (45) and for all t ≥ 0, 1− e−t ≤ t , we get

A ≤ (2L4γ3
n+1/3) ‖YΓn

− x⋆‖2 + L4dγ4
n+1/2 + γ3

n+1dL̃
2/6 .

Combining this bound and (44) in (43) concludes the proof.

Proof of Theorem 6. The proof of the Theorem is the same as the one of Theorem 3, using
Lemma 15 in place of Lemma 13, and is omitted.

4.7 Proof of Theorem 9

Our main tool is the Gaussian Poincaré inequality [5, Theorem 3.20] (see also [3, Theorem 4.1.1])
which states that if Z = (Z1, . . . , Zd) is a Gaussian vector with identity covariance matrix, then

Var {g(Z)} ≤ ‖g‖2Lip. The Gaussian Poincaré inequality may be applied to Rγ defined by (9)

noticing that for all y ∈ R
d, Rγ(y, ·) is a Gaussian distribution with mean y − γ∇U(y) and

covariance matrix 2γ Id.

Lemma 16. Assume H1. Let g : Rd → R be a Lipschitz function. Then for all γ > 0, y ∈ R
d,

0 ≤ Rγ {g(·)−Rγg(y)}2 (y) =
∫

Rγ(y, dz) {g(z)−Rγg(y)}2 ≤ 2γ ‖g‖2Lip .

To go further, we decompose π̂N
n (f)− Ex[π̂

N
n (f)] as the sum of martingale increments,

π̂N
n (f)−Ex[π̂

N
n (f)] =

N+n−1
∑

k=N

{

E
Gk+1

x

[

π̂N
n (f)

]

− E
Gk
x

[

π̂N
n (f)

]}

+E
GN

x

[

π̂N
n (f)

]

−Ex[π̂
N
n (f)] , (46)

where (Gn)n≥0 here is the natural filtration associated with Euler approximation (Xn)n≥0. This
implies that the variance may be expressed as the following sum

Varx
{

π̂N
n (f)

}

=

N+n−1
∑

k=N

Ex

[

(

E
Gk+1

x

[

π̂N
n (f)

]

− E
Gk
x

[

π̂N
n (f)

])2
]

+ Ex

[

(

E
GN
x

[

π̂N
n (f)

]

− Ex[π̂
N
n (f)]

)2
]

. (47)
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Because π̂N
n (f) is an additive functional, the martingale increment E

Gk+1
x

[

π̂N
n (f)

]

−E
Gk
x

[

π̂N
n (f)

]

has a simple expression. For k = N + n− 1, . . . , N + 1, define backward in time the function

ΦN
n,k : xk 7→ ωN

k,nf(xk) +Rγk+1
ΦN

n,k+1(xk) , (48)

where ΦN
n,N+n : xN+n 7→ ΦN

n,N+n(xN+n) = ωN
N+n,nf(xN+n). Denote finally

ΨN
n : xN 7→ RγN+1

ΦN
n,N+1(xN ) . (49)

Note that for k ∈ {N, . . . , N + n− 1}, by the Markov property,

ΦN
n,k+1(Xk+1)−Rγk+1

ΦN
n,k+1(Xk) = E

Gk+1

x

[

π̂N
n (f)

]

− E
Gk
x

[

π̂N
n (f)

]

, (50)

and ΨN
n (XN ) = E

GN
x

[

π̂N
n (f)

]

. With these notations, (47) may be equivalently expressed as

Varx
{

π̂N
n (f)

}

=

N+n−1
∑

k=N

Ex

[

Rγk+1

{

ΦN
n,k+1(·)−Rγk+1

ΦN
n,k+1(Xk)

}2
(Xk)

]

+Varx
{

ΨN
n (XN )

}

. (51)

Now for k = N + n, . . . , N + 1, we will use the Gaussian Poincaré inequality (Lemma 16) to the
sequence of function ΦN

n,k to prove that x 7→ Rγk+1
{ΦN

n,k+1(·)−Rγk+1
ΦN

n,k+1(x)}2(x) is uniformly

bounded. It is required to bound the Lipschitz constant of ΦN
n,k . For k ∈ {N, . . . , N + n− 1}

and for all y, z ∈ R
d, we have

∣

∣ΦN
n,k+1(y)− ΦN

n,k+1(z)
∣

∣ =

∣

∣

∣

∣

∣

ωN
k+1,n {f(y)− f(z)}+

N+n
∑

i=k+2

ωN
i,n

{

Qk+2,i
γ f(y)−Qk+2,i

γ f(z)
}

∣

∣

∣

∣

∣

.

(52)

Lemma 17. Assume H1 and H2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+L).
Then for all Lipschitz functions f : Rd → R and ℓ ≥ n ≥ 1, Qn,ℓ

γ f is a Lipschitz function with

∥

∥Qn,ℓ
γ f

∥

∥

Lip
≤

ℓ
∏

k=n

(1− κγk)
1/2 ‖f‖Lip .

Proof. Recall that for all µ, ν probability measures on R
d and p ≤ q, Wp(µ, ν) ≤ Wq(µ, ν).

Hence, for all y, z ∈ R
d, the Monge-Kantorovich theorem (3):

∣

∣Qn,ℓ
γ f(y)−Qn,ℓ

γ f(z)
∣

∣ ≤ ‖f‖LipW1(δyQ
n,ℓ
γ , δzQ

n,ℓ
γ ) ≤ ‖f‖Lip W2(δyQ

n,ℓ
γ , δzQ

n,ℓ
γ ) .

The proof then follows from Lemma 12 with p = 1.

Lemma 18. Assume H1 and H2. Let (γk)k≥1 be nonincreasing sequence with γ1 ≤ 2/(m+L).
Let N ≥ 0 and n ≥ 1. Then for all y ∈ R

d, Lipschitz function f and k ∈ {N, . . . , N + n− 1},

Rγk+1

{

ΦN
n,k+1(·)−Rγk+1

ΦN
n,k+1(y)

}2
(y) ≤ 8γk+1 ‖f‖2Lip (κΓN+2,N+n+1)

−2 ,

where ΦN
n,k+1 is given by (48).

19



Proof. By (52),
∥

∥

∥
ΦN

n,k

∥

∥

∥

Lip
≤∑N+n

i=k+1 ω
N
i,n

∥

∥Qk+2,i
γ f

∥

∥

Lip
. Using Lemma 17, the bound (1−t)1/2 ≤

1− t/2 for t ∈ [0, 1] and the definition of ωN
i,n given by (22), we have

∥

∥ΦN
n,k

∥

∥

Lip
≤ ‖f‖Lip

N+n
∑

i=k+1

ωN
i,n

i
∏

j=k+2

(1− κγj/2)

≤ 2 ‖f‖Lip (κΓN+2,N+n+1)
−1

N+n
∑

i=k+1







i
∏

j=k+2

(1− κγj/2)−
i+1
∏

j=k+2

(1 − κγj/2)







≤ 2 ‖f‖Lip (κΓN+2,N+n+1)
−1 .

Finally, the proof follows from Lemma 16.

Also to control the last term in right hand side of (51), we need to control the variance
of ΨN

n (XN ) under δxQ
N
γ . But similarly to the sequence of functions ΦN

n,k, Ψ
N
n is Lipschitz by

Lemma 17 since for all y, z ∈ R
d, we have

∣

∣ΨN
n (y)−ΨN

n (z)
∣

∣ =

∣

∣

∣

∣

∣

N+n
∑

i=N+1

ωN
i,n

{

QN+1,i
γ f(y)−QN+1,i

γ f(z)
}

∣

∣

∣

∣

∣

. (53)

Therefore it suffices to find some bound for the variance of g under δyQ
n,p
γ , for g : Rd → R a

Lipschitz function, y ∈ R
d and γ > 0, which is done in the following Lemma.

Lemma 19. Assume H1 and H2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+L).
Let g : Rd → R be a Lipschitz function. Then for all n, p ≥ 1, n ≤ p and y ∈ R

d

0 ≤
∫

Rd

Qn,p
γ (y, dz)

{

g2(z)−Qn,p
γ g(y)

}2 ≤ 2κ−1 ‖g‖2Lip ,

where Qn,p
γ is given by (10).

Proof. By decomposing g(Xp)−E
Gn
y [g(Xp)] =

∑p
k=n+1{EGk

y [g(Xp)]−E
Gk−1
y [g(Xp)]}, and using

E
Gk
y [g(Xp)] = Qk+1,p

γ g(Xk), we get

VarGn

y {g(Xp)} =

p
∑

k=n+1

E
Gn
y

[

E
Gk−1
y

[

(

E
Gk
y [g(Xp)]− E

Gk−1
y [g(Xp)]

)2
]]

=

p
∑

k=n+1

E
Gn

y

[

Rγk

{

Qk+1,p
γ g(·)−Rγk

Qk+1,p
γ g(Xk−1)

}2
(Xk−1)

]

.

Lemma 16 implies VarGn

y {g(Xp)} ≤ 2
∑p

k=n+1 γk
∥

∥Qk+1,p
γ g

∥

∥

2

Lip
. The proof follows from Lemma 17

and Lemma 14, using the bound (1− t)1/2 ≤ 1− t/2 for t ∈ [0, 1].

Corollary 20. Assume H1 and H2. Let (γk)k≥1 be nonincreasing sequence with γ1 ≤ 2/(m+L).
Then for all Lipschitz function f ,

Varx
{

ΨN
n (XN )

}

≤ 8κ−3 ‖f‖2Lip Γ−2
N+2,N+n+1 ,

where ΨN
n is given by (49).
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Proof. By (53), ΨN
n is Lipschitz function with

∥

∥ΨN
n

∥

∥

Lip
= ‖f‖Lip

N+n
∑

i=N+1

ωN
i,n

∥

∥QN+1,i
γ f

∥

∥

Lip
.

Using Lemma 17, the bound (1− t)1/2 ≤ 1− t/2 for t ∈ [0, 1] and the definition of ωN
i,n given by

(22), we have

∥

∥ΨN
n

∥

∥

Lip
≤ ‖f‖Lip

N+n
∑

i=N+1

ωN
i,n

i
∏

j=N+2

(1− κγj/2)

≤ 2 ‖f‖Lip (κΓN+2,N+n+1)
−1

N+n
∑

i=N+1







i
∏

j=N+2

(1− κγj/2)−
i+1
∏

j=N+2

(1− κγj/2)







≤ 2 ‖f‖Lip (κΓN+2,N+n+1)
−1 .

The proof follows from Lemma 19.

Proof. Plugging the bounds given by Lemma 18 and Corollary 20 in (51), we have

Varx
{

π̂N
n (f)

}

≤ 8κ−2 ‖f‖2Lip
{

Γ−2
N+2,N+n+1ΓN+1,N+n + κ−1Γ−2

N+2,N+n+1

}

≤ 8κ−2 ‖f‖2Lip
{

Γ−1
N+2,N+n+1 + Γ−2

N+2,N+n+1(γN+1 + κ−1)
}

.

Using that γN+1 ≤ 2/(m+ L) concludes the proof.

4.8 Proof of Theorem 10

Let N ≥ 0, n ≥ 1, x ∈ R
d and f be a Lipschitz function. To prove Theorem 10, we derive

an upper bound of the Laplace transform of π̂N
n (f) − Ex[π̂

N
n (f)]. Using the decomposition by

martingale increments (46)

Ex

[

eλ{π̂
N
n (f)−Ex[π̂

N
n (f)]}

]

= Ex

[

exp

(

λ{EGN

x

[

π̂N
n (f)

]

− Ex[π̂
N
n (f)]}+

N+n−1
∑

k=N

λ{EGk+1

x

[

π̂N
n (f)

]

− E
Gk
x

[

π̂N
n (f)

]

}
)]

.

Now using (50) with the sequence of functions (ΦN
n,k) and ΨN

n given by (48) and (49), respectively,
we have by the Markov property

Ex

[

eλ{π̂
N
n (f)−Ex[π̂

N
n (f)]}

]

= Ex

[

eλ{Ψ
N
n (Xn)−Ex[ΨN

n (Xn)]}
N+n−1
∏

k=N

Rγk+1

{

exp
(

λ{ΦN
n,k+1(·)−Rγk+1

ΦN
n,k+1(Xk)}

)}

(Xk)

]

(54)

where Rγ is given by (9) for γ > 0. We use the same strategy to get concentration inequalities
than to bound the variance term in the previous section, replacing the Gaussian Poincaré in-
equality by the log-Sobolev inequality to get uniform bound for Rγk+1

{exp(λ
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{ΦN
n,k+1(·) − Rγk+1

ΦN
n,k+1(Xk)})}(Xk) w.r.t. Xk, for all k ∈ {N + 1, . . . , N + n}. Indeed for all

x ∈ R
d, recall that Rγ(x, ·) is a Gaussian distribution with mean x − γ∇U(x) and covariance

matrix 2γ Id. The log-Sobolev inequality provides a bound for the Laplace transform of Lipschitz
function g(Z)− Rγg(x) where Z is distributed under Rγ(x, ·).
Lemma 21 ([5, Theorem 5.5]). Assume H1. Then for all Lipschitz function g, γ > 0, x ∈ R

d

and λ > 0,
∫

Rγ(x, dy) {exp (λ{g(y)−Rγg(x)})} ≤ exp
(

γλ2 ‖g‖2Lip
)

.

where Rγ is given by (9).

We deduced from this lemma, (52) and Lemma 17, an equivalent of Lemma 18 for the Laplace
transform of ΦN

n,k+1 under δyRγk+1
for k ∈ {N + 1, . . . , N + n} and all y ∈ R

d.

Corollary 22. Assume H1 and H2. Let (γk)k≥1 be nonincreasing sequence with γ1 ≤ 2/(m+L).
Let N ≥ 0 and n ≥ 1. Then for all k ∈ {N + 1, . . . , N + n}, y ∈ R

d and λ > 0,

Rγk+1

{

exp
(

λ{ΦN
n,k+1(·)−Rγk+1

ΦN
n,k+1(y)}

)}

(y) ≤ exp
(

4γk+1λ
2 ‖f‖2Lip (κΓN+2,N+n+1)

−2
)

,

where ΦN
n,k is given by (48).

It remains to control the Laplace transform of ΨN
n under δxQ

N
γ , where δxQ

N
γ is defined by

(10). For this, using again that by (53) and Lemma 17, ΨN
n is a Lipschitz function, we iterate

Lemma 21 to get bounds on the Laplace transform of Lipschitz function g under Qn,ℓ
γ (y, ·) for

all y ∈ R
d and n, ℓ ≥ 1, since for all n, ℓ ≥ 1, Qn,ℓ

γ g is a Lipschitz function by Lemma 17.

Lemma 23. Assume H1 and H2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+L).
Let g : Rd → R be a Lipschitz function, then for all n, p ≥ 1, n ≤ p, y ∈ R

d and λ > 0:

Qn,p
γ

{

exp
(

λ{g(·)−Qn,p
γ g(y)}

)}

(y) ≤ exp
(

κ−1λ2 ‖g‖2Lip
)

, (55)

where Qγ
n,p is given by (10).

Proof. Let (Xn)n≥0 the Euler approximation given by (2) and started at y ∈ R
d. By decom-

posing g(Xp) − E
Gn
y [g(Xp)] =

∑p
k=n+1{EGk

y [g(Xp)] − E
Gk−1
y [g(Xp)]}, and using E

Gk
y [g(Xp)] =

Qk+1,p
γ g(Xk), we get

E
Gn

y

[

exp
(

λ
{

g(Xp)− E
Gn

y [g(Xp)]
})]

= E
Gn

y

[

p
∏

k=n+1

E
Gk−1

y

[

exp
(

λ
{

E
Gk
y [g(Xp)]− E

Gk−1

y [g(Xp)]
})]

]

= E
Gn

y

[

p
∏

k=n+1

Rγk
exp

(

λ
{

Qk+1,p
γ g(·)−Rγk

Qk+1,p
γ g(Xk−1)

})

(Xk−1)

]

.

By the Gaussian log-Sobolev inequality Lemma 21, we get

E
Gn

y

[

exp
(

λ
{

g(Xp)− E
Gn

y [g(Xp)]
})]

≤ exp

(

λ2

p
∑

k=n+1

γk
∥

∥Qk+1,p
γ g

∥

∥

2

Lip

)

.

The proof follows from Lemma 17 and Lemma 14, using the bound (1 − t)1/2 ≤ 1 − t/2 for
t ∈ [0, 1].
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Combining this result with (53) and Lemma 17, we get an analogue of Corollary 20 for the
Laplace transform of ΨN

n :

Corollary 24. Assume H1 and H2. Let (γk)k≥1 be nonincreasing sequence with γ1 ≤ 2/(m+L).
Let N ≥ 0 and n ≥ 1. Then for all λ > 0,

Ex

[

eλ{Ψ
N
n (Xn)−Ex[ΨN

n (Xn)]}
]

≤ exp
(

4κ−3λ2 ‖f‖2Lip Γ−2
N+2,N+n+1

)

,

where ΨN
n is given by (49).

The Laplace transform of π̂N
n (f) can be explicitly bounded using Corollary 22 and Corol-

lary 24 in (54).

Proposition 25. Assume H1 and H2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤
2/(m+ L). Then for all N ≥ 0, n ≥ 1, Lipschitz functions f : Rd → R and λ > 0:

Ex

[

eλ{π̂
N
n (f)−Ex[π̂

N
n (f)]}

]

≤ exp
(

4κ−2λ2 ‖f‖2Lip Γ−1
N+2,N+n+1u

(3)
N,n(γ)

)

,

where u
(3)
N,n(γ) is given by and (24).
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