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Abstract

We consider in this paper the problem of sampling a probability distribution 7 hav-
ing a density w.r.t. the Lebesgue measure on R?, known up to a normalisation factor
T — e_U(“)/fR,i e~V®Wdy. Under the assumption that U is continuously differentiable,
VU is globally Lipshitz and U is strongly convex, we obtain non-asymptotic bounds for the
convergence to stationarity in Wasserstein distances of the sampling method based on the
Euler discretization of the Langevin stochastic differential equation for both constant and
decreasing step sizes. The dependence on the dimension of the state space of the obtained
bounds is studied to demonstrate the applicability of this method in the high dimensional set-
ting. The convergence of an appropriately weighted empirical measure is also investigated
and bounds for the mean square error and exponential deviation inequality for Lipschitz
functions are reported. Some numerical results are presented to illustrate our findings.

1 Introduction

Let 7 be a probability distribution on R%, d > 1, with density  — e*U(z)/ fRd e VW dy w.r.t. the
Lebesgue measure, where U is continuously differentiable, gradient Lipshitz and strongly convex.
Consider the Langevin stochastic differential equation associated with :

dY; = —VU(Y,)dt + V24B, , (1)

where (Bi)i>0 is a d-dimensional Brownian motion. Under the stated assumptions on U, 7
satisfies a log-Sobolev inequalities (see [2, 6, 3]) and the Markov semi-group associated with
the Langevin diffusion (Y;);>0 converges exponentially fast to = with a rate independent of the
dimension of the state space. We study in this paper the sampling method based on the Euler-
Maruyama discretization scheme associated to the Langevin diffusion, which defines a (possibly)
non-homogeneous, discrete-time Markov chain given by

Xir1 = Xk = 1 VU(Xk) + /2% 412111 (2)
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where (Zi)r>1 is an i.i.d. sequence of standard Gaussian random variables and (yx)g>1 is a
sequence of stepsizes, which can either be held constant or be chosen to decrease to 0.

This method was originally proposed in the physics literature by [19] and introduced in
the computational statistics community by [11] and [12]. It has been studied in depth by [21],
which proposed to use a Metropolis-Hastings step at each iteration to enforce reversibility w.r.t. =
leading to the Metropolis Adjusted Langevin Algorithm (MALA). They coin the term unadjusted
Langevin algorithm (ULA) to stress the fact that the Metropolis-Hastings step is avoided.

We obtain in this paper non-asymptotic and computable bounds between the marginal laws
of the Markov chain (X,,),>0 defined by the Euler discretization and the target distribution 7
in Wasserstein distance in nonincreasing step sizes. When the sequence of step sizes is constant
i = 7y for all k > 0, the Markov chain (X,),>0 has a unique stationary distribution 7, (see
[21]), which in most of the cases differs from the distribution 7. Quantitative estimates between
7 and 7, is obtained. When (74),>1 decreases to zero and 21?;1 v = oo then we show that the
marginal distribution of the non-homogeneous Markov chain (X,,),>0 converges to the target
distribution 7 with explicit expression for the convergence rate.

The paper is organized as follows. In Section 2, we study the convergence in Wasserstein
distances of the Euler discretization for constant and decreasing stepsizes. In Section 2.1 we pro-
vide non-asymptotic bounds of convergence of the weighted empirical measure. Some numerical
illustrations are given Section 3 to support our claims. The proofs are given in Section 4. Some
technical derivations are carried out in a supplementary paper [8].

Notations and conventions

Denote by B(R?) the Borel o-field of RY, F(R?) the set of all Borel measurable functions on R¢
and for f € F(R?), ||fllc = sup,epra|f(z)]. For u a probability measure on (R¢, B(R?)) and
f € F(R?) a p-integrable function, denote by u(f) the integral of f w.r.t. u. We say that ¢ is a
transference plan of y and v if it is a probability measure on (R? x R?, B(R? x R9)) such that for
all measurable set A of R?, ((A x R?) = u(A) and ((R? x A) = v(A). We denote by II(u, v) the
set of transference plans of p and v. Furthermore, we say that a couple of R%random variables
(X,Y) is a coupling of p and v if there exists ¢ € II(p,v) such that (X,Y) are distributed
according to (. For two probability measures p and v, we define the Wasserstein distance of
order p > 1 as

1/p
W)= (it [ el acen)
CEM(1,v) JRxR

By [23, Theorem 4.1], for all u1, v probability measure on R%, there exists a transference plan (* €
II(p, v) such that for any coupling (X,Y") distributed according to ¢*, W, (1, v) = E[|| X — Y||P]/P.
This kind of transference plan (respectively coupling) will be called an optimal transference plan
(respectively optimal coupling) associated with W,. We denote by P,(R?) the set of probability
measures with finite p-moment: for all € P,(RY), [p. [|#]|” p(dz) < +o0. By [23, Theorem
6.16], Pp(Rd) equipped with the Wasserstein distance W), of order p is a complete separable
metric space.

Let f : RY — R be a Lipschitz function, namely there exists C' > 0 such that for all =,y €
RY, |f(z) = f(y)] < Cllz —y||. Then we denote ||, = inf{|f(z) = f()|llz —yll " | 2,y €
R? x # y}. The Monge-Kantorovich theorem (see [23, Theorem 5.9]) implies that for all u,v
probabilities measure on R¢,

Witn) =swf [ foman) - [ oman) |77 SR, <1} @



For all z € R and M > 0, we denote by B(x, M), the ball centered at x of radius M. Let
n,m € N* and M be a n x n-matrix, then denote by M7 the transpose of M and ||M]|| the
Frobenius associated with M defined by ||[M| = Tr(M*M). Let n,m € N* and F : R® — R™
be a twice continuously differentiable function. Denote by VF and V2F the Jacobian and the
Hessian of F' respectively. Denote also by AF the vectorial Laplacian of F' defined by: for all
z € R?, AF(z) is the vector of R™ such that for all i € {1,--- ,m}, the i-th component of AF(z)

is equals to 2?21(62171-/8,%?)(1:). In the sequel, we take the convention that for n,p e N, n <p
then >°7 =0 and [[} = 1.

2 Non-asymptotic bounds in Wasserstein distance of order
2 for ULA

Consider the following assumption on the potential U:

H1. The function U is continuously differentiable on R? and is gradient Lipschitz, i.e. there
exists L > 0 such that for all x,y € RY,

IVU(z) = VU@ < Lz =yl .

Under H1, if yg is a probability measure satisfying [ ||z||?uo(dz) < oo then by [17, The-
orem 2.5, Theorem 2.9 Chapter 5] there exists a unique strong solution (Y;);>o to (1) with
initial distribution po. Denote by (P;):>0 the semi-group associated with (1), which is reversible
w.r.t. m, and hence admits 7 as its (unique) invariant measure.

H2. U is strongly conves, i.e. there exists m > 0 such that for all x,y € RY,
U(y) > U(x) + (VU (2),y —x) + (m/2) |z —y* .

Under H2, [18, Theorem 2.1.8] shows that U has a unique minimizer z* € R%. If in addition
H1 holds, then [18, Theorem 2.1.12, Theorem 2.1.9] shows that for all z,y € R%:

(VU(y) = VU(2),y =) > (5/2) |y = 2]” + — i = IVU(y) - VU@ , (4)
(VU(y) = VU(z),y — ) = m |y — x| , (5)

where oL
h= (6)

Note that H1 and (5) imply that L > m. We first obtain the geometric rate of convergence
to stationarity of the semi-group in Wasserstein distance. It is worthwhile to note that these
bounds do not depend on the dimension d.

Theorem 1. Assume H1 and H2.
(i) For all p > 2, probability measures p and v € Pp(R?) and t > 0,

Wi (1uPy, vPy) < & Wy (11, )

(ii) The stationary distribution 7 satisfies

/ I — o*| w(dz) < d/m. . (7)
Rd



Proof. Most of the statement is well known; see [4] and the references therein. Nevertheless for
completeness, we provide the proof in Section 4.1. |

Let (yx)r>1 be a sequence of positive and non-increasing step sizes and for n,p € N, denote
by

P
F"aP = Z Yk = Fl,n . (8)
k=n
For v > 0, consider the Markov kernel R, given for all A € B(R?) and = € R? by

Ry(o.4) = [ m) 2 exp (~(a) ™y =2+ VU @) dy 9)

Under H1 R, is strongly Feller, irreducible, strongly aperiodic. The sequence (X,)n>0 given in
(2) is a Markov chain with respect to the sequence of Markov kernels (R, )n>1. For p,n > 1,
p > n, define

QP =Ry Ry, QI=Q) (10)

with the convention that for n,p > 0, n < p, Q5" is the identity operator. The stability
of the Euler discretization of a one-dimensional Langevin diffusion with constant step size has
been studied in [21, Section 3]; We generalize these results to multidimensional diffusions and
decreasing stepsizes.

Theorem 2. Assume H1 and H2. For any v € (0,2/(m+ L)), Ry has a unique stationary
distribution m. Moreover, for all p > 1, m, € Pp(Rd) and for all probability measure pu €
Pop(R?), we have for all n > 0:

Wap (LR, my) < (1 = 59)" Wap (1, my) - (11)
Proof. The proof is postponed to Section 4.2. O

We now proceed to establish explicit bounds for Wa(uoQY, ), with py € Po(R?).  Since
7 is invariant for P for all ¢ > 0, it suffices to get some bounds on Wa(1oQ%, o Pr, ), with
vy € Po (Rd) and take vy = w. To do so, we construct a coupling between the diffusion and the
linear interpolation of the Euler discretization. In the strongly convex case, an obvious candidate
is the synchronous coupling (Y, Y)¢>o for allm > 0 and ¢ € [I',,Ty41) by
Y =Yp, — [p VU(Y.)ds + V2(B; — Br,) 12)

Yy =Yr, - VU(Yr,)(t =) +V2(B, — Br,)

where (T';,),>1 is given in (8). Therefore since for all n > 0, W3 (o Pr,, , Q%) < E[||Yr, —Yr, |17,
where p and vy are the marginals of (j, we compute an explicit bound of the Wasserstein distance
between the sequence of distributions (NOQZ)nZO and the stationary measure m of the Langevin
diffusion (1).

Theorem 3. Assume HI and H2. Let (x)k>1 be a nonincreasing sequence with v1 < 1/(m+1L).
Then for all o € P2(RY) and n > 1,

W3 (10Q%, m) < ull (VW5 (no, 7) + P (7) , (13)
where .
uP () Z T = rw/2) (14)
k=1



and
n

uP (V) Z LY 7 {7 i} d + dLPyi/m+dL*y2/6) [ (1= kw/2) (15)
i=1 k=i+1

where k is defined in (6) .
Proof. The proof is postponed to Section 4.3. |

We now consider stepsizes which goes to 0. Under this additional assumption, we may
establish the convergence of the sequence (1oQ%)n>0 to .

Corollary 4. Assume H1 and H2. Let (v )k>1 be a nonincreasing sequence with y1 < 1/(m+L).
Assume that limg_, 00 v = 0 and limy, 4 oo I'yy = +00. Then for all pg € ’Pg(Rd),

Tim Wa (0@, ) = 0.
Proof. The proof is postponed to Section 4.4. O

In the case of constant stepsizes v, = v for all k¥ > 1, we can deduce from Theorem 3, a
bound between 7 and the stationary distribution 7 of R,.

Corollary 5. Assume H1 and H2. Let (yx)k>1 be a constant sequence vy, = 7 for all k > 1
with v1 <1/(m+ L). Then

W3(m,my) <267 ' L2y {k~" + v} (2d + dL*y/m + dL?+?/6) .
Proof. The proof is postponed to Section 4.5. |
We can improve these bound under additional regularity assumptions on the potential U.

H3. The potential U is three times continuously differentiable and there exists L such that for
all x,y € RY: ~
[V2U(z) = VU (y)|| < Lz —y] - (16)

Note that under H1 and H3, we have that for all z,y € R?,
- 2 ~
IV2 U@yl < Lyl . | A0 @)|| < dL?. (17)

Theorem 6. Assume HI1, H2 and H3. Let (x)k>1 be a nonincreasing sequence with v <
1/(m+ L). Then for all g € Pa(RY) and n > 1,
W3 (0@ m) < ) (VW3 (o, m) + i (7) (18)

where uY is given by (14) and

n

WP () 2N dyd {202+ mTHER/3 4 Lt + ALY (3m) + LA (/6 +m N b T (=),

i=1 k=i+1
(19)
where k is defined in (6) .
Proof. The proof is postponed to Section 4.6. |

In the case of constant stepsizes v, = v for all £k > 1, we can deduce from Theorem 6, a
sharper bound between 7 and the stationary distribution m, of R,.



Corollary 7. Assume H1 and H2. Let (y;)k>1 be a constant sequence v, = v for all k > 1
with v1 <1/(m+ L). Then

Wi(m,my) < 25 Ldy? {2L2 + Kk~ YL?/3 4+ yL* + 4L/ (3m)) 4+ yL*(~/6 + m_l)} .
Proof. The proof follows the same line as the proof of Corollary 5 and is omitted. |

Let 2* be the unique minimizer of U. Since for ally € R? ||z — y||* < 2(||a — 2*||*+||z* — y|?),
using (7), we get:
W3 (80, m) < 2(|lw — 2| + d/m) . (20)
If y19 € P2(R?), we have W3 (po, ) < [ po(dz)W3 (85, 7). Hence, the right hand side of (13) and
(18) scales linearly with the dimension d. When ~;, =« for all k£ > 1, (14), (15) (19) imply

{ ul () = (L= ry/2)", u(y) <2672y {571 + 9} (2d + dL2y/m + dL*4?/6)

ul? (7) < 267 1dy? {2L2+n’1(i2/3+7L4 +4L*/(3m)) +7L4(7/6+m71)} o @)

Using this bound, given € > 0, we may determine the smallest number of iterations and an
associated step-size v, starting from x, to approach the stationary distribution in the Wasserstein
distance W2(d,Q7,m) with a precision e. Details and further discussions are included in the
supplementary paper [8].

Based on Theorem 3 and Theorem 6, we can obtain explicit bounds for W;(ézQZ, ) for all
x € R For simplicity, we consider sequences (yx)r>1 defined for all k > 1 by v, = vk~ for
m < 1/(m+ L) and « € (0,1]. The order of these bounds is given in Table 1 and Table 2, see
[8, Section 1-2] for details. Two regimes can be observed as in stochastic approximation in the
case of Theorem 3.

ae(0,1) a=1
Order of convergence | O(n=%) | O(n=!) for v1 > 2! see [8, Section 3]

Table 1: Order of convergence of Wy (595@2, 7) for v = 11k~ under H1 and H2

Order of convergence | O(n=2%) | O(n™?)

Table 2: Order of convergence of Wg(ézQZ}, m) for v, = vk~ under H1, H2 and H3

We now consider the fixed horizon setting. Assuming here that the step sizes (vi)r>1 are

defined for k > 1 by v, = 1k~ * for a € [0,1), we determine the value of v; minimizing the

upper bound u%l)(v)WQQ (po, ) + ug)(v). The results are summarized in Table 3, see [8, Section

1-2] for details.

Optimal choice of 41 | Bound on W3 (8,Q%, m)
a€[0,1) O(n“~tlog(n)) O(dn~'log(n))

Table 3: Order of the optimal choice of «; for the fixed horizon setting and implied bound on
W3 (6,Q%, ) based on Theorem 3

Moreover, these bounds for a fixed number of iterations implies using the doubling trick (see
[14]) an anytime algorithm which guarantees for all n > 1 and 2 € R? that Wy(6,Q%, ) is

O((log(n)n=1)12) or O((log(n)n=1).



Optimal choice of 41 | Bound on W3 (8,Q%, m)
a€0,1) O(n*tlog(n)) O(dn=21og*(n))

Table 4: Order of the optimal choice of v; for the fixed horizon setting and implied bound on
W3 (6.Q%, ) based on Theorem 6

2.1 Mean square error and concentration

Let be f : R? — R and (X, )n>0 the Euler discretization of the Langevin diffusion. In this section
we study the approximation of [;. f(y)m(dy) by the weighted average estimator

N+n

ﬁ':zv(f) = Z wlzc\,[nf(Xk) ) wl]c\,[n = ’7k+1FX/l+2,N+n+1 . (22)
k=N+1

where N > 0 is the length of the burn-in period, n > 1 is the number of samples, and for n,p € N,
Iy, p is given by (8). We restrict the discussion to Lipschitz functions f. In all this section, Py
and E, denote the probability and the expectation respectively, induced on ((R%)N, B(R%)N) by
the Markov chain (X,,),>0 started at x € R<. We first compute an explicit bounds for the Mean
Squared Error (MSE) of this estimator defined by:

AV = 7(N]] = (Bl (D) = 7(N} + Var, {7V (N} . (23)

We first obtain an elementary bound for the bias. For all k € {N +1,...,N + n}, let & be
the optimal transference plan between 51625 and 7w for W5. Then by the Jensen inequality and
because f is Lipschitz, we have:

MSE (N, n) = E, [

Ll ()] - () = ( > {f(Z)f(y)}ék(dz,dy)>2
k=N+1 Re x R4
N+n
2 CLJN z — 2 z .
<MWl > o Lo =l )

Using Theorem 3, we end up with the following bound.

Proposition 8. Assume H1 and H2. Let (vk)k>1 be a nonincreasing sequence with v1 <
1/(m + L). Let z* be the unique minimizer of U. Let (X,)n>0 be given by (2) and started at
x € R Then for all n, N > 0 and Lipschitz function f : R — R:

N+n

A 2 *
(Bl (D] =7} <IFITy D wil {20le = I + d/m)u’ () + wi()}
k=N+1
where u%l)(v) is given in (14) and wy, () is equal to ul? (v) defined by (15) and to u£?>(7), defined
by (19), if H3 holds.

Consider now the variance term. To control this term, we adapt the proof of [16, Theorem
2] for homogeneous Markov chain to our inhomogeneous setting, and we have:

Theorem 9. Assume HI and H2. Let (x)k>1 be a nonincreasing sequence with v1 < 2/(m+1L).
Then for all N >0, n > 1 and Lipschitz functions f : R? — R, we get

. _ 2 _
Var, {Wr]y(f)} <8k7? ||fHLip FN1+2,N+n+1UN,n('Y) )



where
def

onn () Z {1+ TR oy (67 +2/(m + L) } (24)
Proof. The proof is postponed to Section 4.7. O

It is worth to observe that this bound is independent from the dimension. We may now discuss
the bounds on the MSE (obtained by combining the bounds for the squared bias Proposition 8
and the variance Theorem 9) for step sizes given for k > 1 by v = 11k~ where a € [0,1]
and 1 < 1/(m + L). Details of these calculations are included in the supplementary paper [8,
Section 5]. The order of the bounds (up to numerical constants) of the MSE are summarized
in Table 5 as a function of 3, n and N. If the total number of iterations n + N is held fixed

Bound for the MSE
a=0 Y1+ ()~ exp(=k71N/2)
a€ (0,1/2) | in=+ (mnt=*)texp(—ryi N9/(2(1 — «)))
a=1/2 y1log(n)n=12 + (yn!/?) "L exp(—ry NV/2/4)
ae(1/2,1) | nH{y +97 exp(=nNTT/(2(1 —a)))}
a=1 log(n)~! {m + AT IN—mE 21

Table 5: Bound for the MSE for v, = vk~ for fixed y; and N under H1 and H2

Bound for the MSE
a=0 77 + (mn) "t exp(—Ks11N/2)
a e (0,1/3) [ vin = + (mn'=*) Texp(—sm N'™*/(2(1 — o))
a=1/3 73 log(n)n=2/3 + (min?/3) "L exp(—k1 NV/2/4)
ae(1/3,1) | n* ' {hi 4 exp(=enN'T/(2(1 - a)))}
a=1 log(n) T {12 11 N72]

Table 6: Bound for the MSE for ~;, = vk~ for fixed 7 and N under H1, H2 and H3

(fixed horizon setting), as in Section 2, we may optimize the value of the step size 71 but also of
the burn-in period N to minimize the upper bound of the MSE. The order (in n) for different
values of o € [0, 1] are summarized in Table 8 and Table 7 (we display the order in n but not
the constants, which are quite involved and not overly informative).

We observe two differents bounds based on Theorem 3 and Theorem 6. Let us discuss first,
the bounds obtained by the last one. It appears that, for any o € [0,1/3), we can always achieved
the order n~2/3 by choosing appropriately 71 and N (for o = 1/3 we have only log'/3(n)n=2/3).
The worst case is for o € (1/3,1], where in fact the best strategy is to take N = 0 and the
largest possible value for 74 = 1/(m + L). Finally, we note that from the explicit expression of
the bound in [8, Section 5.2], that constant step sizes (o = 0) are optimal. Finally, we mention
that the bounds for a € [0,1/2) for a fixed number of iterations implies using the doubling trick
(see [14]) an anytime algorithm which guarantees for all n > 1, a MSE of order O(n~2%/3).

Now let us discuss the bounds based on Theorem 3. This time for any a € [0,1/2), we can
always achieved the order n~'/2 by choosing appropriately ; and N (for a = 1/2 we have only
log(n)n=1/2). For a € (1/2,1], the best strategy is to take N = 0 and the largest possible value
for vy = 1/(m + L). Finally, we note that from the explicit expression of the bound in [8], that
constant step sizes (a = 0) are again optimal.

We can also follow the proof of [16, Theorem 5] to establish an exponential deviation inequality
for 72 () — Eu[2 ()] given by (22)



Optimal choice of 41 | Optimal choice of N | Bound for the MSE
a=0 n-1/3 Ve n-2/3
o € (0, 1/2) na—1/3 n(l 3—a)/(1-a) n—2/3
a=1/2 (log(n))~1/3 log!/%(n) log!/®(n)n—2/3
a€(1/2,1) 1/(m+ L) 0 n'—
a=1 1/(m+ L) 0 log(n)

Table 7: Bound for the MSE for v, = vk~ for fixed n under H1, H2 and H3

Optimal choice of v | Optimal choice of N | Bound for the MSE
a=0 172 72 172
a € (0, 1/2) na—1/2 7’L(1 2—a)/(1-a) n—1/2
a=1/2 (log(n))~1/2 log(n) log(n)n=1/2
a€(1/2,1) 1/(m+ L) 0 n'—
a=1 1/(m+ L) 0 log(n)

Table 8: Bound for the MSE for v, = vk~ for fixed n under H1 and H2

Theorem 10. Assume HI1 and H2. Let (y;)k>1 be a nonincreasing sequence with v1 < 2/(m+
L). Let (X,)n>0 be given by (2) and started at x € R%. Then for all N >0, n > 1,7 > 0 and
Lipschitz functions f : R4 — R:

B, [#2(f) 2 Eol# ()] + 7] < exp (

_TQHQFN+2,N+n+1>
2
16 ||f||Lip UNn(7)

Proof. Using the Markov inequality and Proposition 25, for all A > 0, we have:
P [#2 () 2 Eali ()] + 7] < exp (=Ar + 46720 £y Do g1 09 (9)) -

Then the result follows from taking A = (r&?I yi2 N+nt1)/(8 Hf||iip UNn(7Y))- O

If we apply this result to the sequence (vx)r>1 defined for all k > 1 by v = v1k™¢, for
a € [0,1], we end up with a concentration of order exp(—n'~%) for a € [0,1) and n~! for a = 1.

3 Numerical experiments

Consider a binary regression set-up in which the binary observations (responses) (Y1,...,Y}) are
conditionally independent Bernoulli random variables with success probability o(B87 X;), where
o is the logistic function defined for z € R by o(z) = e*/(1 +€*) and X; and B are d dimensional
vectors of known covariates and unknown regression coefficient, respectively. The prior distri-
bution for the parameter B is a zero-mean Gaussian distribution with covariance matrix 3. The
posterior density distribution of 8 is up to a proportionality constant given by

m8(BI((Xi,Yi))1<i<p) o exp (Z YiBT X, — log(1+ef %) — (1/2)3T§3‘1ﬂ> .

i=1

Bayesian inference for the logistic regression model has long been recognized as a numerically
involved problem, due to the analytically inconvenient form of the model’s likelihood function.



Several algorithms have been proposed, trying to mimick the data-augmentation (DA) approach
of [1] for probit regression; see [15], [9] and [10]. Recently, a very promising DA algorithm has
been proposed in [20], using the Polya-Gamma distribution in the DA part. This algorithm has
been shown to be uniformly ergodic for the total variation by [7, Proposition 1], which provides
an explicit expression for the ergodicity constant. This constant is exponentially small in the
dimension of the parameter space and the number of samples (it is likely however that this
constant is very conservative). Moreover, the complexity of the augmentation step is cubic in
the dimension, which prevents from using this algorithm when the dimension of the regressor is
large.

We apply ULA to sample from the posterior distribution 7g(-[(X;,Y;)1<i<p). The gradient
of its log-density may be expressed as

X;

-1
Trerx = P

Vilog{ma(B(Xi, Vi)r<i<p)} = Y YiXi —

i=1

L = (1/4) maxi<;<p{|| Xl +)\;1i1n (3)}, where Apin(2) and Apax(X) are the minimal and maximal
eigenvalues of X, respectively. To assess the proposed algorithm, we first compare the histograms
given by ULA and the Pdlya-Gamma Gibbs sampling from [20]. For this, we take d = 5, p = 100,
generate synthetic data (Y;)1<i<p and (X;)i1<i<p, and set g = (37 , || X5]|?)(dp) =t 1a. We
produce 107 samples from the Polya-Gamma sampler using the R package BayesLogit [24]. Next,
we make 10% runs of the Euler approximation scheme with n = 10% effective iterations, with a
constant sequence (yx)r>1, Vi = 10(kn'/2)~! for all k£ > 0 and a burn-in period N = n'/2. The
plot of the histogram of the Pélya-Gamma Gibbs sampler for one component, the corresponding
mean of the obtained histograms for ULA and the quantiles at 95% can be found in Figure 1.
The same procedure is also applied with the decreasing step size sequence (7 )r>1 defined by
i = mk~Y? with 41 = 10(klog(n)/?)~!, and for the burn in period N = log(n), see also
Figure 1. In addition, we also compare the Pélya-Gamma Gibbs sampler, MALA and ULA on

Therefore — log w5 (+|(X;, Y;)1<i<p) is strongly convex H2 with m = AL, (¥) and satisfies HI with

1.4F i
[_Jquantile at 95% 14 [Jquantile at 95%
——Mean of ULA
1.2} —Mean of ULA
— Polya—Gamma 1.2F
8 —Polya-Gamma
1|
1k
0.8 0.8
0.6 0.6
0.4r 0.41
0.2 0.2
. . . . . .
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0.4 0.6 0.8 1 12 14 16 18

Figure 1: Empirical distribution comparison between the Polya-Gamma Gibbs Sampler and
ULA. Left panel: constant step size v, = 71 for all k& > 1; right panel: decreasing step size
Ve =11k~ Y2 for all k > 1

four real data sets, which are summarized in Table 9. Note that for the Australian credit data set,
the ordinal covariates have been stratified by dummy variables. Furthermore, we normalized the
data sets and consider the Zellner prior setting ¥~ = (n2p/3)S3! where ¥x =p~1 3P | X, X[
; see [22], [13] and the references therein. Also, we apply a pre-conditioned version of MALA and
ULA, targeting the probability density 7g(-) o Fﬂ(2¥2-). Then, we obtain samples from g by
post-multiplying the obtained draws by Z¥2. For each data sets, 100 runs of the Polya-Gamma
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Dimensions . .
Observations p | Covariates d
Data set
German credit ! 1000 25
Heart disease 2 270 14
Australian credit® 690 35
Prima indian diabetes® 768 9
Table 9: Dimension of the data sets
0.68F —— —
o e -0.2751 =
0675 ———— -0.28" - ’
— —
0.67f — -0.285F %
Polya-Gamma MALA ULA Polya-Gamma MALA ULA
—— —0.249F —
-0.52" ; —0.25" — E=—
-053f —— -0258 == o
- -0.252r — .
—0.541 1 -0.253r EI
Polya-Gamma MALA uLA Polya-Gamma MALA TA

Figure 2: Upper left: German credit data set. Upper right: Australian credit data set. Lower
left: Heart disease data set. Lower right: Prima Indian diabetes data set

Gibbs sampler (105 iterations per run), and 100 runs of MALA and ULA (10 iterations per run)
have been performed. Despite the fact that longer runs are carried out, the computational time
of ULA is still two orders of magnitude lower than the Pélya-Gamma simulator. For MALA,
the step-size is chosen so that the acceptance probability in stationarity is approximately equal
to 0.5. For ULA, we choose constant step-sizes v = 5 x 1072 for all the data sets. We display
the boxplots of the estimators for the mean of one component of 8 in Figure 2. Note that there
are some discrepancies between the posterior mean estimators obtained using either the DA,
MALA and ULA. These differences are of order 10~ and are likely to be due to accumulations
of numerical errors. These differences are negligible compared to the posterior variance of these
estimators, which is of order 10~!. These results all imply that ULA is a much simpler and faster
alternative to the Polya-Gamma Gibbs sampler and MALA algorithm.

4 Proofs

Let (F;)¢>0 be the filtration associated with (B;)i>0 with Fy, the o-field generated by (Yo, Yo).

4.1 Proof of Theorem 1

We preface the proof by a technical Lemma. Denote by x* the unique minimizer of U. The
generator </ associated with (P;);>¢ is given, for all f € C*(R?) and = € RY, by:

A f(x) = = (VU(z), Vf(z)) + Af(z) -

Thttp://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
2http://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)
Shttp://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
4http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

(25)
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Lemma 11. Assume HI1 and H2.
(i) For allt >0 and x € R,

E, [V = 2" |P] < llo = a* e 4+ S (1 - e72m).

3~

(ii) For allt >0 and x € R,

E, [Hyt - xﬂ < dt(2+ L*2/3) + (3/2)2L2 |« — 2*|* .

Proof. (i) Denote for all z € R% by V(z) = ||z — 2*||°. Under H1 SUPye(o,7] E.[||Y;]]] < +o0

for all T > 0. Therefore, the process (V(Yt) —V(x)— f(f Q%V(YS)ds) N is a (F;)¢>o-martingale
>0 =

under P,. Since VU (z*) = 0 and using (5), we have

GV (x) =2(—(VU(z) = VU(z"),x —2*) +d) <2 (—mV(z) + d) . (26)

Denote for all t > 0 and z € R? by v(¢,z) = P,V (z). Then we have, dv(t,z)/0t = P,/ V ().
Using (26), we get
ov(t, x)
ot

= PV (x) < —2mP.V(z) 4+ 2d = —2muo(t,z) + 2d ,

and the proof follows from the Gronwall inequality.

(ii) Denote for all z,y € R%, V,(y) = |ly — z|°. therefore the process (Vi (Y;) — Vai(z) —
fot AV, (Y,)ds)i>0, is a (Fi)iso-martingale under P,. Denote for all ¢ > 0 and = € R by
o(t,x) = P;V,(z). Then we get,

ou(t,x) -
e P Vy(z) . (27)
By (5), we have for all y € R?,
AVa(y) =2(= (VU(y)y — o) +d) <2 (-mVsly) + d— (VU(@),y—2)) . (28)

Using (27), this inequality and that V, is positive, we get

aagz ) _ Pyt V() < 2 (d - /Rd (VU (z),y — ) Py(x, dy)) _ (29)

By the Cauchy-Schwarz inequality, VU (z*) = 0, (1) and the Jensen inequality, we have,
By (VU (2),Y, — 2)]| < [[VU(2)]| [Es [Y; — ]|

[/ (VU(Y. U(m*)}ds] ‘

< V[ VU () - VU @) (/ E, [IVU(Y,) - VU(a >||}ds>1/2.

< ||VU(x

12



Furthermore, by H1 and Lemma 11-(i), we have

1—e2mt ,  2m4e 2t _1 1/2
< 2 _ax -~ _x caer -
<V ||z — |< o Iz =@l + S (d/m>>
S L2 |lo — a¥|| (tlo — 2*|| + £3/2d"/?) | (30)

where we used for the last line that by the Taylor theorem with remainder term, for all s > 0,
(1—e=2m%)/(2m) < s and (2ms—+e~ 2™ —1)/(2m) < ms?, and the inequality v/a + b < /a+/b.
Plugging (30) in (29), and since 2 || — z*|| t3/2d"/2 < t || — 2*||* + 2d, we get

o (t
92) o4 3124w — 2*| + L22d

Since (0, z) = 0, the proof is completed by integrating this result.

O
Proof of Theorem 1. (i) Consider the following SDE in R? x R%:
dy; = -VU(Y;)dt 4+ v2dB; , (31)
dy; = -VU(Y;)dt 4+ v2dB; ,

where (Yp,Yp) is some coupling between p and v. Since g and v are in P,(R?) and VU is
Lipschitz, then by [17, Theorem 2.5, Theorem 2.9, Chapter 5], this SDE has a unique strong
solution (Y3, Y;)r>0 associated with (By)i>0. Moreover since (Yz, Y:)i>0 is a solution of (31),

» t
| -
0

which implies using (5) and Gronwall’s inequality that

P t
| e )|
0

For all ¢t > 0, the law of (Y, }:/t) is a coupling between uP; and vP;. Therefore by definition of
W, Wy(uPr, vP;) < E[|Y; — Y;||P]'/? showing (i).

~ ~ ||[P—2 ~ ~
Y- Y, Y, - V|| (VUM) - VU), Y, - Vi) ds,

p ~
[

Y; - Y; Y, - Y,

p ~
< HYO -Yo

P > |12 —mpt
d5§HY07YOH e pe

(i) Set V(z) = ||z — 2*||>. By Jensen’s inequality and Lemma 11-(i), for all ¢ > 0 and ¢ > 0,
we get

d
7(VAe)=aP(V Ac)<7n(PV Ac)= /ﬂ(d:c) cA {”1‘ —x*||Pe2™ 4 E(l - eth)}
<7w(VAc)e ™+ (1—e?Md/m .

Taking the limit as t — 400, we get 7(V Ac¢) < d/m. Using the monotone convergence theorem,
taking the limit as ¢ — +o0, we finally obtain (7).
O
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4.2 Proof of Theorem 2
We preface the proof by a Lemma.

Lemma 12. Assume HI1 and H2. Let (v;)k>1 be a nonincreasing sequence with v1 < 2/(m+ L)
and p € N, p > 1. Then for all ug, vy € ng(Rd) and £ >n>1,

4

p
W32 (1oQ7", vo@") < {H(l - H%)} W3 (110, v0) ;

k=n

Proof. Let (o be an optimal transference plan of pg and vy and (Zx)r>1 be a sequence of i.i.d. d-
dimensional Gaussian random variables. We consider the processes (X}, X?),>o with initial
distributions equal to (p and defined for £ > 0 by

Xf;+1 = X] = Won VU(X]) + V240 Zipr §=1,2. (32)

Using (32), we get for any p > n > 0. W;f(MOQZ’Z, Q') <E [HXZ1 - XZQHQP} and (4) implies
for k>n—1,
1y = X2 * = 1%k = X2 + 2 i VU (XD = VUKD
i (X X VUK~ VUGD) < (1 - romeens) X - X2

Therefore by a straightforward induction we get for all £ > n,

J4
It = X2l < TT = w15 - X3

k=n
[l

Proof of Theorem 2. Let u € ng(Rd) and p > 1. It is straightforward that for all n > 0,
pR? € Pop(R?). Then, by Lemma 12 is a strict contraction in (Py,(R%), Wa,) and there is a
unique fixed point 7, which is the unique invariant distribution. Equation (11) follows from
Lemma 12. ([l

4.3 Proof of Theorem 3

We preface the proof by a technical Lemma.

Lemma 13. Assume H1 and H2. Let (y;)r>1 be a nonincreasing sequence with y1 < 1/(m+L).
Let (o € P2(RY x RY), (Y3, Y)i>0 such that (Yo, Yo) is distributed according to (o and given by
(12). Then almost surely for all n >0 and € > 0,

HYFn+1 - ?Fn+1H2 < {1 — Tn+1 (H - 26>} HYFn - ?Fn H2 (33)
Fn+1
4 @y £ (207 / IVU(Y.) — VU (¥, )[? ds
FTI,

E7r |:HYFn+1 - ?Fnﬂ Hﬂ < {1 — Tntl (’i B 26>} HYFn o ?F" ||2 (34)

+ L2921 (1/(4) + 9n41) (24 + L [V, — 2 |* + dL22,,/6) .
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Proof. Let n >0 and € > 0, and set ©,, = Yy, — Y1 . We first show (33).
By definition we have:

2

Tt
[ YU - SUr)}ds| <290 (04, FU (V) - VUV, )

n

2 2
1©n41]” = lOn]I”+

_q / 0, (YUY — VU (Ye )} ds . (35)

Young’s inequality and Jensen’s inequality imply
| R o 2 2
/ {VU(Y,) = VU(Yr,)}ds \
r

n

<2y, ||VU(,) - VU(Yr,)

Fn+1
+2%+1/ [VU(Ys) — VU(Yr,)|| ds .

n

Using (4), 71 < 1/(m + L) and (y%)k>1 is nonincreasing, (35) becomes

1ﬂn«#l
19n+11* < {1 = yus1s} [Onll” + 2%+1/ IVU(Ys) = VU (3r,))1* ds

n

_Q/F"“ (O, {VU(Ys) — VU(Yr )} ds . (36)

n

Using the inequality | (a,b) | < €||al|? + (4¢)7||b]|? concludes the proof of (33).
We now prove (34). Note that (33) implies that

EZ [[@ns1]]’] < {1 = yns1 (s — 200} |00

Tni1
+ @i+ 07 [ B [IVU() - VUG, )] ds. (3)

n

By HI, the Markov property of (Y;)¢>0 and Lemma 11-(ii), we have

Fn+1 P 9
[ e [Ivo ) - vu, ) as
r

< 12 (dy2 ey + ALk 12+ (1/2) L2 Yr, — %)
The proof is then concluded plugging this bound in (37) . O

Proof of Theorem 3. Let (o be an optimal transference plan of o and m. Let (Y2, Y4)i>0 with
(Yo,Y ) distributed according to (o and defined by (12). By definition of W5 and since for all

t >0, 7 is invariant for P, W2(u0Q",7) < Ee, [HYFR ~Yr, HQ] Lemma 13-(34) with € = x/4,

a straightforward induction and Lemma 11-(i) imply for all n > 0

B¢, [V, = Ve °] < ulP(nEq, [|[¥o - Vol*] + 4n() (38)
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where (u,(zl)('y))nzl is given by (14), and

An() E LY 7 {7 v} d+dL*7/6) [ (1 - mye/2)
k=i+1

=1
+L4Z5Z’yz {/{ Jr’}/z} H (1 — kyg/2)
k=i+1

with
6, = B, (Yo — || + (1 — e 72T (d/m) (39)

Then the proof follows since Yy is distributed according to 7 and by (7), which shows that for
alli e {1,--- ,n}, 6; < d/m. O

4.4 Proof of Corollary 4

Lemma 14. Let (y)r>1 be a sequence of nonincreasing real numbers, w > 0 and 71 < w
Then for alln >0, j>1and € {1,...,n+ 1},

-1

n+l n+l n+1
z;kH (1 — @) J<H1—ka Z%
) i+1

Proof. Let £ € {1,...,n+ 1}. Since (yx)r>1 is non-increasing,

n+1l n+1 £—1 n+1 n+1l n+1
ST =) =D I =) +>. [] 0 -=w)~
=1 k=i+1 1=1 k=i+1 i=f k=i+1
n+1 n+1l n+1
<H1_w7k Z'Yl “l"Yg 12 H l—wyk
i=f k=i+1

n+1

< H 1 — @) Z%

O

Proof of Corollary 4. By Theorem 3, it suffices to show that u$d and uf ) defined by (14)
and (15) respectively, goes to 0 as n — +oo. Using the bound 1 + ¢ < et for t € R, and
limy, 400 Iy, = 400, we have lim,,, 4 o u%l) = 0. Now to show that lim,,_, 4+ ug) = 0, a sufficient
condition since (yx)r>0 is nonincreasing, is that limy, 100 >y [Tr_;1; (1 — £9/2) 77 = 0. But
since (yx)r>1 is nonincreasing, there exists ¢ > 0 such that cI',, < n—1 and by Lemma 14 applied

with £ = [cI',,| the integer part of c[',:

n n ey |—1
ST (0= mw/2) 77 < 2yper,) /5 +exp (=ATn(1 =T 'Ter, ) /2) Z i - (40)

Since limg_s 1 o0 Y& = 0, by the Ceséro theorem, lim,, , y oo T, = 0. Therefore since lim,, o I,y =
400, limy 400 (T'n) "'Ter, | = 0, and the conclusion follows from combining in (40), this limit,

limg 400 vk = 0, limy, 100 'y = +00 and ZLCF"J ! Y < el O
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4.5 Proof of Corollary 5

Since by Theorem 2, for all z € R¢, (51R2)n20 converges to 7, as n — oo in (P2(R?), Wa), the
proof then follows from Theorem 3 and Lemma 14 applied with £ = 1.

4.6 Proofs of Theorem 6

Lemma 15. Assume H1, H2 and HS3. Let Dk)kzl be a monincreasing sequence with_'yl <
1/(m+ L). and {y € P2(RY x RY). Let (Y3, Y)i>0 be defined by (12) such that (Yo,Yo) is
distributed according to (g. Then for alln > 0 and € > 0, almost surely

7 ([ = Ve ] <41 = s (= 20} Y2, = 7, || (4D)

9340 {dCL? + € (I212 4+ i1 LY4) + 92, L/6) + LA™ /3 4+ 7mia) ¥, — 2 *}

Proof. Let n > 0 and € > 0, and set ©,, = Yr, — ?pn. Using Ito6’s formula, we have for all
s € [anrn+1)7

VU(Y,) — VU (Yr,) = / {V2U(YU)VU(YU) + &(VU)(YU)} du + \/5/ V2U(Y,)dB, . (42)

F’Vl

Since ©,, is Fr,-measurable and ([, V2U (Y.)dBu)se(o,r, 1] I8 a (Fs)sefo,r,,,)-martingale under
H1, by (42) we have:

[T [(0,, VU(Y,) — VU (Yr,))]|
- K@"’EH" [/FS {VQU(Yu)VU(Y“) + K(VU)(Yu)} dU] >‘

n

Combining this equality and | (a,b) | < €||la||> + (4¢)71||b]|? in (36) we have

B [10n41]7] <41 = vt (5 = 20} [0 + 291 EZ

| R
+ (26)_1/
I

n

/ o) - VU<an>||2ds]

n

i ds. (43)

Ern UF {V2U(Yu)VU(Yu) + (1/2)&(VU)(YU)} du]

n

We now separately bound the two last terms of the right hand side. By H1, the Markov property
of (Y2)¢>0 and Lemma 11-(ii), we have

1ﬂn«#l F 2
[ e [Ivow) - vus, )P as
I

n

< L (2 + L2 yh 0 124 (1/2) L2 IV, — 2 F) © (44)
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Also by (17), we get using VU (z*) = 0, Jensen’s inequality and Fubini’s theorem,

def Tt
{ de

/

I

n

2
ds

B { / VR0(Y)VU(Y) + (1 /Q)A(VU)(Yu)du]

< /Fim(sm/F E7r [H{VQU DVU(Y.) + (1/2)A(VU)(Y, )}m duds
= 2/F T /F E7r {HVQU(M)VU(M)H2 +(1/4) | AU 1 du ds
< 2/ ”“ W)L /5 EFrn |:||Yu - x*”ﬂ duds +~3,,dI2/6 . (15)

By Lemma 11-(i), the Markov property and for all ¢ > 0, 1—e™t < ¢, we have for all s € [[',, Ty y1],
[ B (1% = o] du < @)1 = e PO i, < a4 ds - 1)
FTL

Using this inequality in (45) and for all £ > 0,1 —e™* <t , we get
A< (L' /3) Ve, — a*|” + Lidvys 0 /2 + 7 dL2 6
Combining this bound and (44) in (43) concludes the proof. O

Proof of Theorem 6. The proof of the Theorem is the same as the one of Theorem 3, using
Lemma 15 in place of Lemma 13, and is omitted. O

4.7 Proof of Theorem 9

Our main tool is the Gaussian Poincaré inequality [5, Theorem 3.20] (see also [3, Theorem 4.1.1])
which states that if Z = (Z1,...,Z) is a Gaussian vector with identity covariance matrix, then
Var {g(Z)} < || g||iip. The Gaussian Poincaré inequality may be applied to R., defined by (9)

noticing that for all y € RY, R, (y,-) is a Gaussian distribution with mean y — yVU(y) and
covariance matrix 2vI,.

Lemma 16. Assume H1. Let g : R® — R be a Lipschitz function. Then for all v > 0, y € R?,

0< R, {g(-) - Ryg)}’ (v) = /Rv(y,dZ) {9(2) — Ryg(y)}* < 2vllgllL, -

To go further, we decompose 72 (f) — E.[#Y (f)] as the sum of martingale increments,

N+n—1

AN ) -Eale (N = > {EG 7 (H)] — B [#Y (H]FHEDN [#) (F)] —Ealad ()], (46)

k=N

where (Gp,)n>0 here is the natural filtration associated with Euler approximation (X, ),>0. This
implies that the variance may be expressed as the following sum

N+n—1

Var, {7 (N} = > . [EF [7 ()] - B [7Y (N])’]

k=N
+E, [(ES [7Y (D] - Bol7Y (£)] - @m)
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Because 72 (f) is an additive functional, the martingale increment ES*+* [ZY ()] —EZ* [N ()]
has a simple expression. For k=N +n —1,..., N + 1, define backward in time the function

q)r]:{k P Wl]cvnf(xk) + Ry @y k+1($k) ) (48)
where <I)51V,N+n S TN b <I>7]XN+n(xN+n) = w]]\\,’+n,nf(zN+n). Denote finally
\I/f:[ IN R’YN+lq)’fZXN+1(zN) . (49)
Note that for k € {N,..., N +n — 1}, by the Markov property,
®p o1 (X)) = Ry @y (Xi) = B+ [0 (f)] = EZ* [7 (f)] (50)
and WY (Xy) = EJ~ [#) (f)]. With these notations, (47) may be equivalently expressed as

N+n—1

Var, (70} = Y2 Ee Ry (@i () = Rt @i (X)) (X
k=N

+ Var, {¥N(Xy)} . (51)

Now for k = N +n,..., N + 1, we will use the Gaussian Poincaré inequality (Lemma 16) to the
sequence of functlon <I>Nk to prove that & — Ry, {®), () = Ry, @)1 ()} (2) is uniformly
bounded. It is required to bound the Lipschitz constant of @ﬁk . Forke{N,...,.N+n-1}
and for all y, z € R%, we have

N+n

}(I)n k+1 y) — (I)ﬁf,kJrl(z)} = wl]chrl,n {fly) = f(2)} + Z Wﬁfn {Q:H’if(y) - Q,’i”’f(z)}
i=k+2
(52)

Lemma 17. Assume H1 and H2. Let (;)k>1 be a nonincreasing sequence with v, < 2/(m+1L).
Then for all Lipschitz functions f : R* = R and £ > n > 1, Q;”Zf s a Lipschitz function with

14

195 Fll iy < TT =81 2 1 s

k=n

Proof. Recall that for all u,v probability measures on R? and p < q, Wy(p,v) < Wy(p,v).
Hence, for all y, z € R%, the Monge-Kantorovich theorem (3):

Q5 F(y) — Q5 F(2)] < I1F i Wr(8, @5, 8:Q5) < [ £llpiy, W(6,Q%,6.Q%) -
The proof then follows from Lemma 12 with p = 1. (|

Lemma 18. Assume HI1 and H2. Let (y)r>1 be nonincreasing sequence with v < 2/(m+ L).
Let N >0 and n > 1. Then for all y € R%, Lipschitz function f and k € {N,...,N +n — 1},

2 2 _
R’Yk+1 {(I)ﬁf,kJrl() - R’Yk+1(1)n k+1( )} (y) < 87k+1 Hf“Lip (HFN+27N+H+1) 2 )

where O is given by (48).
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Proof. By (52), ||®Y kHLip < N @l [|Q 24 ]|, Using Lemma 17, the bound (1—1)!/> <
1—t/2 for t € [0,1] and the definition of w}Y, given by (22), we have

N4+n i
i=k+1 j=k+2
N+n i it+1
<2 fllip WOnronvans) ™ D 4 [T @ =wmu/2) = T 0= wv/2)
i=k+1 | j=k+2 j=k+2
< 2| fllpip (FON 42, N4ng1)
Finally, the proof follows from Lemma 16. (|

Also to control the last term in right hand side of (51), we need to control the variance
of U¥(Xy) under 6,QY. But similarly to the sequence of functions ®),, W} is Lipschitz by

n
Lemma, 17 since for all y, z € R?, we have

N+n

Yo Wl QYT ) - YT ()} - (53)

i=N+1

W (y) — U (2)] =

Therefore it suffices to find some bound for the variance of g under 6,Q%? , for g : RY 5 R a
Lipschitz function, y € R? and v > 0, which is done in the following Lemma.

Lemma 19. Assume H1 and H2. Let (yx)r>1 be a nonincreasing sequence with vy < 2/(m+L).
Let g : R?* — R be a Lipschitz function. Then for alln,p > 1, n <p andy € R?

" n 2 _
0< [ Q@) () - Q7o) < 2 ol
where QP is given by (10).
Proof. By decomposing g(X,) — Eg" 9(X,)] = gan{Egk [9(X,)] — Eg’“’l [9(X,)]}, and using

Eft [9(Xp)] = Q5T Pg(Xk), we get

Vard" {g(X,)} = D E§ [EP [(ES [9(X,)] — EP [9(X,)])’]

Eg [ Ry, {Q579() = Ry, Q41 Pg(Xe 1)} (Xin)|

Lemma 16 implies Varg"' {9(Xp) <230 i1 "Q§+1’pg"iip. The proof follows from Lemma 17
and Lemma 14, using the bound (1 —#)/2 <1 —t/2 for t € [0,1]. O

Corollary 20. Assume HI and H2. Let (yx)r>1 be nonincreasing sequence with v3 < 2/(m+L).
Then for all Lipschitz function f,

— 2 —
Var, {‘IITIY(XN)} < 8k7? ||f||Lip FN2+2,N+n+1 )

where WY is given by (49).
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Proof. By (53), WX is Lipschitz function with

n

N+n

HlI/’r]:[HLip = [ llLip Z Wl QN Ly

i=N+1

Lip ~

Using Lemma, 17, the bound (1 —¢)*/2 <1 —#/2 for t € [0,1] and the definition of w;, given by
(22), we have

N+n 1
[N i < 1l Y @l (1—#7;/2)
i=N+1 J=N+2
N+n i i+1
<2 fllpp (\Tvsznvens) ™ Y 4 T O=my/2) = I (1 =rv/2)
i=N+1 | j=N+2 J=N+2
<2 fllpip (KU N42,N4n41)
The proof follows from Lemma 19. |

Proof. Plugging the bounds given by Lemma 18 and Corollary 20 in (51), we have

~ — 2 — _ _
Var, {Wr]:[(f)} < 8k7? ||f||Lip {FNiQ,N+n+1FN+17N+" + R 1FN2+2,N+n+1}
— 2 — — —
<8k 2 ||fHLip {FN1+2,N+n+1 + FN2+2,z\r+n+1(’>’N+1 +K 1)} .

Using that yy4+1 < 2/(m + L) concludes the proof. O

4.8 Proof of Theorem 10

Let N >0, n>1, 2z € R?and f be a Lipschitz function. To prove Theorem 10, we derive
an upper bound of the Laplace transform of #(f) — E.[#) (f)]. Using the decomposition by
martingale increments (46)

E, [eA{friY (f)—Eolal (f)]}}

N+n—1
=E, [eXp (A{EfN 70 (D] = ol (O + Y MEZ [#)(f)] — EZ* [ﬁiv(fﬂ}ﬂ :
k=N

Now using (50) with the sequence of functions (®}',) and W)Y given by (48) and (49), respectively,
we have by the Markov property

E, [eA{friY (f)—Eolal (f)]}}

N+n—1

N _ N

=, [eA{xI/n (Xn)—Ex [T (X))} H Ry, {exp (/\{q)rlxkﬂ(.) — R%H@%H(Xk)})} (Xk)]
k=N

(54)

where R, is given by (9) for v > 0. We use the same strategy to get concentration inequalities
than to bound the variance term in the previous section, replacing the Gaussian Poincaré in-
equality by the log-Sobolev inequality to get uniform bound for R, {exp(A
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{tl)kaﬂ() — R.YHICI)ka_H(Xk)})}(Xk) wrt. Xg, forall k€ {N+1,...,N 4+ n}. Indeed for all
r € RY, recall that R, (z,-) is a Gaussian distribution with mean x — yVU(x) and covariance
matrix 2y I4. The log-Sobolev inequality provides a bound for the Laplace transform of Lipschitz
function ¢(Z) — R,g(z) where Z is distributed under R (z, ).

Lemma 21 ([5, Theorem 5.5]). Assume H1. Then for all Lipschitz function g, v > 0, x € R¢
and A > 0,

[ o) fexp (\glo) ~ Rog@D) < ex0 (102 al,) -
where R, is given by (9).
We deduced from this lemma, (52) and Lemma 17, an equivalent of Lemma 18 for the Laplace
transform of ®, | under d,R,, , for k€ {N +1,...,N +n} and all y € R

Corollary 22. Assume HI and H2. Let (yx)r>1 be nonincreasing sequence with v, < 2/(m+L).
Let N >0 andn > 1. Then for allk € {N +1,...,N +n}, y € R and X\ > 0,

2 _
Ry, .y {exp ()\{tl)ka_,’_l() - R'Yk+1(1)7jxk+l(y)})} (y) <exp (4'Yk+1>‘2 ||f||Lip (kLN 42, N+n+1) 2) )
where @ﬁxk is given by (48).

It remains to control the Laplace transform of U2 under (5IQ§V , Where 51624\[ is defined by

(10). For this, using again that by (53) and Lemma 17, WX is a Lipschitz function, we iterate
Lemma 21 to get bounds on the Laplace transform of Lipschitz function g under nge(y, -) for

all y € R% and n, £ > 1, since for all n, £ > 1, ny“ég is a Lipschitz function by Lemma 17.

Lemma 23. Assume H1 and H2. Let (y;)k>1 be a nonincreasing sequence with v, < 2/(m+1L).
Let g : R* = R be a Lipschitz function, then for alln,p > 1, n <p, y € R? and X > 0:

Q7 {exp (Mg () = Q2791 } () < exp (k1A% gll,) - (55)

where Q) is given by (10).

n,p
Proof. Let (X,)n>0 the Euler approximation given by (2) and started at y € R?. By decom-

posing g(X,) — EZ [g(X,)] = S0_ 1 {ES* [g(X,)] — ES [g(X,)]}, and using ES* [¢(X,)] =
QEIPg(Xy), we get

B9 [exp (A {g(X,) — E9" [g(X,)]})]

=E; l IT B [exp (A{ET" [9(X,)] - EJ [Q(Xp)]})}]
k=n-+1

=Ej" [ IT Rwexp (A {Q5Pg() — R, Q5 Pg(Xi1)}) (Xk—l)‘| .
k=n+1

By the Gaussian log-Sobolev inequality Lemma 21, we get

Ey" [exp (AMg(Xp) —EJ" [9(Xp)]})] < exp <A2 > kaQ.’i“’pg||iip> .

k=n-+1

The proof follows from Lemma 17 and Lemma 14, using the bound (1 — t)1/2 <1-1t/2 for
t e [0,1].
O
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Combining this result with (53) and Lemma 17, we get an analogue of Corollary 20 for the
Laplace transform of WX:

Corollary 24. Assume H1 and H2. Let (yx)r>1 be nonincreasing sequence with vy < 2/(m+L).
Let N >0 andn > 1. Then for all A > 0,

E, [eA{wf(XTL)fJEI[W(Xn)]}] < exp (4;-(3)\2 Hf“iip FE2+2,N+n+1) ,

where WY is given by (49).

The Laplace transform of #(f) can be explicitly bounded using Corollary 22 and Corol-
lary 24 in (54).

Proposition 25. Assume H1 and H2. Let (yk)k>1 be a nonincreasing sequence with 1 <
2/(m+ L). Then for all N >0, n > 1, Lipschitz functions f : R? — R and A > 0:

7}N —E, 7}N _ _ 3
E, [MA DB 0N < oxp (45723 | Iy TR o v n i1 8ien ()

where ug\?;?n(’y) is given by and (24).

Acknowledgment

The work of A.D. and E.M. is supported by the Agence Nationale de la Recherche, under grant
ANR-14-CE23-0012 (COSMOS).

References

[1] J. H. Albert and S. Chib. Bayesian analysis of binary and polychotomous response data.
Journal of the American Statistical Association, 88(422):669-679, 1993.

[2] D. Bakry, P. Cattiaux, and A. Guillin. Rate of convergence for ergodic continuous Markov
processes: Lyapunov versus Poincaré. J. Funct. Anal., 254(3):727-759, 2008.

[3] D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of Markov diffusion operators,
volume 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences]. Springer, Cham, 2014.

[4] Francois Bolley, Ivan Gentil, and Arnaud Guillin. Convergence to equilibrium in Wasserstein
distance for Fokker-Planck equations. J. Funct. Anal., 263(8):2430-2457, 2012.

[5] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities. Oxford University
Press, Oxford, 2013. A nonasymptotic theory of independence, With a foreword by Michel
Ledoux.

[6] P. Cattiaux and A. Guillin. Trends to equilibrium in total variation distance. Ann. Inst.
Henri Poincaré Probab. Stat., 45(1):117-145, 2009.

[7] H. M. Choi and J. P. Hobert. The Polya-Gamma Gibbs sampler for Bayesian logistic
regression is uniformly ergodic. FElectron. J. Statist., 7:2054-2064, 2013.

23



8]

[9]

A. Durmus and Moulines E. Supplement supplement to “non-asymptotic convergence anal-
ysis for the unadjusted langevin algorithm”, 2015.

S. Frithwirth-Schnatter and R. Frithwirth. Data augmentation and MCMC for binary and
multinomial logit models statistical modelling and regression structures. In Thomas Kneib
and Gerhard Tutz, editors, Statistical Modelling and Regression Structures, chapter 7, pages
111-132. Physica-Verlag HD, Heidelberg, 2010.

R. B. Gramacy and N. G. Polson. Simulation-based regularized logistic regression. Bayesian
Anal., 7(3):567-590, 09 2012.

U. Grenander. Tutorial in pattern theory. Division of Applied Mathematics, Brown Univer-
sity, Providence.

U. Grenander and M. I. Miller. Representations of knowledge in complex systems. J. Roy.
Statist. Soc. Ser. B, 56(4):549-603, 1994. With discussion and a reply by the authors.

T. E. Hanson, A J. Branscum, and W. O. Johnson. Informative g-priors for logistic regres-
sion. Bayesian Anal., 9(3):597-611, 2014.

E. Hazan and S Kale. Beyond the regret minimization barrier: optimal algorithms for
stochastic strongly-convex optimization. Journal of Machine Learning Research, 15(1):2489—
2512, 2014.

C. C. Holmes and L. Held. Bayesian auxiliary variable models for binary and multinomial
regression. Bayesian Anal., 1(1):145-168, 03 2006.

Aldéric Joulin and Yann Ollivier. Curvature, concentration and error estimates for Markov
chain Monte Carlo. Ann. Probab., 38(6):2418-2442, 2010.

I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus. Graduate Texts in
Mathematics. Springer New York, 1991.

Y. Nesterov. Introductory Lectures on Convexr Optimization: A Basic Course. Applied
Optimization. Springer, 2004.

G. Parisi. Correlation functions and computer simulations. Nuclear Physics B, 180:378-384,
1981.

N. G. Polson, J. G. Scott, and J. Windle. Bayesian inference for logistic models using Polya-
Gamma latent variables. Journal of the American Statistical Association, 108(504):1339—
1349, 2013.

G. O. Roberts and R. L. Tweedie. Exponential convergence of Langevin distributions and
their discrete approximations. Bernoulli, 2(4):341-363, 1996.

D. Sabanés Bové and L. Held. Hyper-g priors for generalized linear models. Bayesian Anal.,
6(3):387-410, 2011.

C. Villani. Optimal transport : old and new. Grundlehren der mathematischen Wis-
senschaften. Springer, Berlin, 2009.

J. Windle, N. G. Polson, and J. G. Scott. Bayeslogit: Bayesian logistic regression, 2013.
http://cran.r-project.org/web/packages/BayesLogit/index.html R package version
0.2.

24


http://cran.r-project.org/web/packages/BayesLogit/index.html

	Introduction
	Non-asymptotic bounds in Wasserstein distance of order 2 for ULA
	Mean square error and concentration

	Numerical experiments
	Proofs
	Proof of theo:convergence-WZ-strongly-convex
	Proof of theo:convergencepEuler
	Proof of theo:distanceEulerdiffusion 
	Proof of coro:distanceEulertarget
	Proof of coro:asymptbias
	Proofs of theo:distanceEulerdiffusionD
	Proof of theo:var
	Proof of theo:concentrationgauss


