A Multilingual, Multi-Style and Multi-Granularity Dataset for Cross-Language Textual Similarity Detection
Résumé
In this paper we describe our effort to create a dataset for the evaluation of cross-language textual similarity detection. We present pre-existing corpora and their limits and we explain the various gathered resources to overcome these limits and build our enriched dataset. The proposed dataset is multilingual, includes cross-language alignment for different granularities (from chunk to document), is based on both parallel and comparable corpora and contains human and machine translated texts. Moreover, it includes texts written by multiple types of authors (from average to professionals). With the obtained dataset, we conduct a systematic and rigorous evaluation of several state-of-the-art cross-language textual similarity detection methods. The evaluation results are reviewed and discussed. Finally, dataset and scripts are made publicly available on GitHub: http://github.com/FerreroJeremy/Cross-Language-Dataset.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...