Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2005

Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification

Résumé

In this survey we discuss different state-of-the-art approaches of combining exact algorithms and metaheuristics to solve combinatorial optimization problems. Some of these hybrids mainly aim at providing optimal solutions in shorter time, while others primarily focus on getting better heuristic solutions. The two main categories in which we divide the approaches are collaborative versus integrative combinations. We further classify the different techniques in a hierarchical way. Altogether, the surveyed work on combinations of exact algorithms and metaheuristics documents the usefulness and strong potential of this research direction.
Fichier principal
Vignette du fichier
puchinger-05.pdf (135.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01299565 , version 1 (07-04-2016)

Identifiants

Citer

Jakob Puchinger, Günther R. Raidl. Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification. First International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2005, Jun 2005, Las Palmas, Spain. pp.41-53, ⟨10.1007/11499305_5⟩. ⟨hal-01299565⟩
109 Consultations
2140 Téléchargements

Altmetric

Partager

More