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Abstract. In this survey we discuss different state-of-the-art approaches
of combining exact algorithms and metaheuristics to solve combinatorial
optimization problems. Some of these hybrids mainly aim at providing opti-
mal solutions in shorter time, while others primarily focus on getting better
heuristic solutions. The two main categories in which we divide the ap-
proaches are collaborative versus integrative combinations. We further clas-
sify the different techniques in a hierarchical way. Altogether, the surveyed
work on combinations of exact algorithms and metaheuristics documents the
usefulness and strong potential of this research direction.

1 Introduction

Hard combinatorial optimization problems (COPs) appear in a multitude of real-
world applications, such as routing, assignment, scheduling, cutting and packing,
network design, protein alignment, and many other fields of utmost economic, indus-
trial and scientific importance. The available techniques for COPs can roughly be
classified into two main categories: exact and heuristic methods. Exact algorithms
are guaranteed to find an optimal solution and to prove its optimality for every
instance of a COP. The run-time, however, often increases dramatically with the
instance size, and often only small or moderately-sized instances can be practically
solved to provable optimality. In this case, the only possibility for larger instances
is to trade optimality for run-time, yielding heuristic algorithms. In other words,
the guarantee of finding optimal solutions is sacrificed for the sake of getting good
solutions in a limited time.

Two independent heterogeneous streams, coming from very different scientific
communities, had significant success in solving COPs:

– Integer Programming (IP) as an exact approach, coming from the operations
research community and based on the concepts of linear programming [11].

– Local search with various extensions and independently developed variants, in
the following called metaheuristics, as a heuristic approach.

Among the exact methods are branch-and-bound (B&B), dynamic program-
ming, Lagrangian relaxation based methods, and linear and integer programming
based methods, such as branch-and-cut, branch-and-price, and branch-and-cut-and-
price [30].

Metaheuristics include, among others, simulated annealing [21], tabu search [18],
iterated local search [26], variable neighborhood search [20], and various population-
based models such as evolutionary algorithms [3], scatter search [19], memetic al-
gorithms [28], and various estimation of distribution algorithms [24].
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Fig. 1. Major classification of exact/metaheuristic combinations.

Recently there have been very different attempts to combine ideas and methods
from these two scientific streams. Dumitrescu and Stützle [13] describe existing
combinations, focusing on local search approaches that are strengthened by the use
of exact algorithms. In their survey they concentrate on integration and exclude
obvious combinations such as preprocessing.

Here, we present a more general classification of existing approaches combining
exact and metaheuristic algorithms for combinatorial optimization. We distinguish
the following two main categories:

– Collaborative Combinations: By collaboration we mean that the algorithms ex-
change information, but are not part of each other. Exact and heuristic algo-
rithms may be executed sequentially, intertwined or in parallel.

– Integrative Combinations: By integration we mean that one technique is a subor-
dinate embedded component of another technique. Thus, there is a distinguished
master algorithm, which can be either an exact or a metaheuristic algorithm,
and at least one integrated slave.

In the following sections this classification is further refined and examples from
the literature are presented, reflecting the current state-of-the-art. Figure 1 gives
an overview of this classification.

2 Collaborative Combinations

The different algorithms and approaches described in this section have in common
that they are top-level combinations of metaheuristics and exact techniques; no
algorithm is contained in another. We further distinguish whether the algorithms
are executed sequentially or in an intertwined or even parallel way.

2.1 Sequential Execution

Either the exact method is executed as a kind of preprocessing before the meta-
heuristic, or vice-versa. Sometimes, it is difficult to say if the first technique is used
as initialization of the second, or if the second is a postprocessing of the solution(s)
generated by the first.

Clements et al. [7] propose a column generation approach in order to solve a
production-line scheduling problem. Each feasible solution of the problem consists
of a line-schedule for each production line. First, the squeaky wheel optimization
(SWO) heuristic is used to generate feasible solutions to the problem. SWO is a
heuristic using a greedy algorithm to construct a solution, which is then analyzed
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in order to find the problematic elements. Higher priorities, such that these ele-
ments are considered earlier by the greedy algorithm, are assigned to them, and
the process restarts until a termination condition is reached. SWO is called several
times in a randomized way in order to generate a set of diverse solutions. In the
second phase, the line-schedules contained in these solutions are used as columns
of a set partitioning formulation for the problem, which is solved using MINTO.
This process always provides a solution which is at least as good as, but usually
better than the best solution devised by SWO. Reported results indicate that SWO
performs better than a tabu-search algorithm.

Applegate et al. [2] propose an approach for finding near-optimal solutions to the
traveling salesman problem. They derive a set of diverse solutions by multiple runs
of an iterated local search algorithm. The edge-sets of these solutions are merged
and the traveling salesman problem is finally solved to optimality on this strongly
restricted graph. In this way a solution is achieved that is typically superior to the
best solution of the iterated local search.

Klau et al. [22] follow a similar idea and combine a memetic algorithm with
integer programming to heuristically solve the prize-collecting Steiner tree prob-
lem. The proposed algorithmic framework consists of three parts: extensive pre-
processing, a memetic algorithm, and an exact branch-and-cut algorithm applied as
post-optimization procedure to the merged final solutions of the memetic algorithm.

Plateau et al. [31] combine interior point methods and metaheuristics for solving
the multiconstrained knapsack problem. The first part is an interior point method
with early termination. By rounding and applying several different ascent heuris-
tics, a population of different feasible candidate solutions is generated. This set of
solutions is then used as initial population for a path-relinking (scatter search) algo-
rithm. Extensive computational experiments are performed on standard multicon-
strained knapsack benchmark instances. Obtained results show that the presented
combination is a promising research direction.

Sometimes, a relaxation of the original problem is solved to optimality and the
obtained solution is repaired to act as a promising starting point for a subsequent
metaheuristic. Often, the linear programming (LP) relaxation is used for this pur-
pose, and only a simple rounding scheme is needed. For example, Feltl and Raidl [36]
solve the generalized assignment problem using a hybrid genetic algorithm (GA).
The LP-relaxation of the problem is solved using CPLEX and its solution is used by
a randomized rounding procedure to create a population of promising integral so-
lutions. These solutions are, however, often infeasible; therefore, randomized repair
and improvement operators are additionally applied, yielding an even more mean-
ingful initial population for the GA. Reported computational experiments suggest
that this type of LP-based initialization is effective.

Vasquez and Hao [43] heuristically solve the multiconstrained knapsack problem
by reducing and partitioning the search space via additional constraints that fix the
total number of items to be packed. The bounds for these constraints are calculated
by solving a modified LP-relaxation of the multiconstrained knapsack problem. For
each remaining part of the search space, parallel tabu-search is finally performed
starting with a solution derived from the LP-relaxation of the partial problem. This
hybrid algorithm yields excellent results also for large benchmark instances with up
to 2 500 items and 100 constraints.

Lin et al. [25] describe an exact algorithm for generating the minimal set of affine
functions that describes the value function of the finite horizon partially observed
Markov decision process. In the first step a GA is used to generate a set Γ of
witness points, which is as large as possible. In the second step a component-wise
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domination procedure is performed in order to eliminate redundant points in Γ .
The set generated so far does, in general, not fully describe the value function.
Therefore, a Mixed Integer Program (MIP) is solved to generate the missing points
in the final third step of the algorithm. Reported results indicate that this approach
requires less time than some other numerical procedures.

Another kind of sequential combination of B&B and a GA is described by Nagar
et al. [29] for a two-machine flowshop scheduling problem in which solution candi-
dates are represented as permutations of jobs. Prior to running the GA B&B is
executed down to a predetermined depth k and suitable bounds are calculated and
recorded at each node of the explicitly stored B&B tree. During the execution of the
GA the partial solutions up to position k are mapped onto the correct tree node.
If the bounds indicate that no path below this node can lead to an optimal solu-
tion, the permutation is subjected to a mutation operator that has been specifically
designed to change the early part of the permutation in a favorable way.

Tamura et al. [40] tackle a job-shop scheduling problem and start from its IP
formulation. For each variable, they take the range of possible values and partition
it into a set of subranges, which are then indexed. The chromosomes of the GA
are defined so that each position represents a variable, and its value corresponds to
the index of one of the subranges. The fitness of a chromosome is calculated using
Lagrangian relaxation to obtain a bound on the optimal solution subject to the
constraints that the values of the variables fall within the correct ranges. When the
GA terminates, an exhaustive search of the region identified as the most promising
is carried out to produce the final solution.

2.2 Parallel or Intertwined Execution

Instead of a strictly sequential batch approach, exact and heuristic algorithms may
also be executed in a parallel or intertwined way. Such peer-to-peer combinations of
exact/heuristic techniques are less frequent. An interesting framework for this pur-
pose was proposed by Talukdar et al. [38, 39] with the so-called asynchronous teams
(A-Teams). An A-Team is a problem solving architecture consisting of a collection
of agents and memories connected into a strongly cyclic directed network. Each of
these agents is an optimization algorithm and can work on the target problem, on
a relaxation—i.e., a superclass—of it, or on a subclass of the problem. The basic
idea of A-Teams is having these agents work asynchronously and autonomously on
a set of shared memories. These shared memories consist of trial solutions for some
problem (the target problem, a superclass, or a subclass as mentioned before), and
the action of an agent consists of modifying the memory by adding a solution, delet-
ing a solution, or altering a solution. A-Teams have been successfully utilized in a
variety of combinatorial optimization problems, see e.g. [5, 39].

Denzinger and Offerman [12] present a similar multi-agent based approach for
achieving cooperation between search-systems with different search paradigms. The
TECHS (TEams for Cooperative Heterogenous Search) approach consists of teams
of one or more agents using the same search paradigm. The communication between
the agents is controlled by so-called send- and receive-referees, in order to filter
the exchanged data. Each agent is in a cycle between searching and processing
received information. In order to demonstrate the usefulness of TECHS, a GA and
a B&B based system for job-shop scheduling is described. The GA and B&B agents
exchange only positive information (solutions), whereas the B&B agents can also
exchange negative information (closed subtrees). Computational experiments show
that the cooperation results in finding better solutions given a fixed time-limit and
in finding solutions comparable to the ones of the best individual system alone in
less time.
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3 Integrative Combinations

In this section we discuss approaches of combining exact algorithms and meta-
heuristics in an integrative way such that one technique is a subordinate embedded
component of another technique.

3.1 Incorporating Exact Algorithms in Metaheuristics

We start by considering techniques where exact algorithms are incorporated into
metaheuristics.

Exactly Solving Relaxed Problems The usefulness of solutions to relaxations of
an original problem has already been mentioned in Section 2.1. Besides exploiting
them to derive promising initial solutions for a subsequent algorithm, they can
be of great benefit for heuristically guiding neighborhood search, recombination,
mutation, repair and/or local improvement. Examples where the solution of the LP-
relaxation and its dual were exploited in such ways are the hybrid genetic algorithms
for the multiconstrained knapsack problem from Chu and Beasley [6] and Raidl [35].

Exactly Searching Large Neighborhoods A common approach is to search
neighborhoods in local search based metaheuristics by means of exact algorithms.
If the neighborhoods are chosen appropriately, they can be relatively large and nev-
ertheless an efficient search for the best neighbor is still reasonable. Such techniques
are known as Very Large-Scale Neighborhood (VLSN) search [1].

Burke et al. [4] present an effective local and variable neighborhood search heuris-
tic for the asymmetric traveling salesman problem in which they have embedded an
exact algorithm in the local search part, called HyperOpt, in order to exhaustively
search relatively large promising regions of the solution space. Moreover, they pro-
pose a hybrid of HyperOpt and 3-opt which allows to benefit from the advantages of
both approaches and gain better tours overall. Using this hybrid within the variable
neighborhood search metaheuristic framework also allows to overcome local optima
and to create tours of high quality.

Dynasearch [8] is another example where exponentially large neighborhoods are
explored. The neighborhood where the search is performed consists of all possi-
ble combinations of mutually independent simple search steps and one Dynasearch
move consists of a set of independent moves that are executed in parallel in a single
local search iteration. Independence in the context of Dynasearch means that the
individual moves do not interfere with each other; in this case, dynamic program-
ming can be used to find the best combination of independent moves. Dynasearch is
restricted to problems where the single search steps are independent, and it has so
far only been applied to problems, where solutions are represented as permutations.

For the class of partitioning problems, Thompson et al. [41, 42] defined the con-
cept of a cyclic exchange neighborhood, which is the transfer of single elements
between several subsets in a cyclic manner; for example, a 2–exchange move can
be seen as a cyclic exchange of length two. Thompson et al. showed that for any
current solution to a partitioning problem a new, edge-weighted graph can be con-
structed, where the set of nodes is split into subsets according to a partition induced
by the current solution of the partitioning problem. A cyclic exchange for the orig-
inal problem corresponds to a cycle in this new graph that uses at most one node
of each subset. Exact and heuristic methods that solve the problem of finding the
most negative-cost subset-disjoint cycle (which corresponds to the best improving
neighbor of the current solution) have been developed.
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Puchinger et al. [34] describe a combined GA/B&B approach for solving a real-
world glass cutting problem. The GA uses an order-based representation, which
is decoded using a greedy heuristic. The B&B algorithm is applied with a certain
probability enhancing the decoding phase by generating locally optimal subpatterns.
Reported results indicate that the approach of occasionally solving subpatterns to
optimality may increase the overall solution quality.

The work of Klau et al. [22] has already been mentioned in Section 2.1 in the
context of collaborative sequential combinations. When looking at the memetic
algorithm we encounter another kind of exact/heuristic algorithm combination. An
exact subroutine for the price-collecting Steiner tree problem on trees is used to
locally improve candidate solutions.

Merging Solutions Subspaces defined by the merged attributes of two or more
solutions can, like the neighborhoods of single solutions, also be searched by exact
techniques. The algorithms by Clements et al. [7], Applegate et al. [2], and Klau et
al. [22], which were already discussed in Section 2.1, also follow this idea, but are
of sequential collaborative nature. Here, we consider approaches where merging is
iteratively applied within a metaheuristic.

Cotta and Troya [9] present a framework for hybridizing B&B with evolutionary
algorithms. B&B is used as an operator embedded in the evolutionary algorithm.
The authors recall the necessary theoretical concepts on forma analysis (formae are
generalized schemata), such as the dynastic potential of two chromosomes x and y,
which is the set of individuals that only carry information contained in x and y.
Based on these concepts the idea of dynastically optimal recombination is developed.
This results in an operator exploring the potential of the recombined solutions
using B&B, providing the best possible combination of the ancestors’ features that
can be attained without introducing implicit mutation. Extensive computational
experiments on different benchmark sets comparing different crossover operators
with the new hybrid one show the usefulness of the presented approach.

Marino et al. [27] present an approach where a GA is combined with an exact
method for the Linear Assignment Problem (LAP) to solve the graph coloring prob-
lem. The LAP algorithm is incorporated into the crossover operator and generates
the optimal permutation of colors within a cluster of nodes, hereby preventing the
offspring to be less fit than its parents. The algorithm does not outperform other
approaches, but provides comparable results. The main conclusion is that solving
the LAP in the crossover operator strongly improves the performance of the GA
compared to the GA using crossover without LAP.

Exact Algorithms as Decoders In evolutionary algorithms, candidate solutions
are sometimes only incompletely represented in the chromosome, and an exact al-
gorithm is used as decoder for determining the missing parts in an optimal way.

Staggemeier et al. [37], for example, present a hybrid genetic algorithm to solve
a lot-sizing and scheduling problem minimizing inventory and backlog costs of mul-
tiple products on parallel machines. Solutions are represented as product subsets for
each machine at each period. Corresponding optimal lot sizes are determined when
the solution is decoded by solving a linear program. The approach outperforms a
MIP formulation of the problem solved using CPLEX.

3.2 Incorporating Metaheuristics in Exact Algorithms

We now turn to techniques where metaheuristics are embedded within exact algo-
rithms.
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Metaheuristics for Obtaining Incumbent Solutions and Bounds In general,
heuristics and metaheuristics are often used to determine bounds and incumbent so-
lutions in B&B approaches. For example, Woodruff [44] describes a chunking-based
selection strategy to decide at each node of the B&B tree whether or not reactive
tabu search is called in order to eventually find a better incumbent solution. The
chunking-based strategy measures a distance between the current node and nodes
already explored by the metaheuristic in order to bias the selection toward dis-
tant points. Reported computational results indicate that adding the metaheuristic
improves the B&B performance.

Metaheuristics for Column and Cut Generation In branch-and-cut and
branch-and-price algorithms, the dynamic separation of cutting-planes and the pric-
ing of columns, respectively, is sometimes done by means of heuristics including
metaheuristics in order to speed up the whole optimization process.

Filho and Lorena [14] apply a heuristic column generation approach to graph
coloring. They describe the principles of their constructive genetic algorithm and
give a column generation formulation of the problem. The GA is used to generate the
initial columns and to solve the slave problem (the weighted maximum independent
set problem) at every iteration. Column generation is performed as long as the
GA finds columns with negative reduced costs. The master problem is solved using
CPLEX. Some encouraging results are presented.

Puchinger and Raidl [32, 33] propose new integer linear programming formu-
lations for the three-stage two-dimensional bin packing problem. Based on these
formulations, a branch-and-price algorithm was developed in which fast column
generation is performed by applying a hierarchy of four methods: (a) a greedy
heuristic, (b) an evolutionary algorithm, (c) solving a restricted form of the pricing
problem using CPLEX, and finally (d) solving the complete pricing problem using
CPLEX. Computational experiments on standard benchmark instances document
the benefits of the new approach. The combination of all four pricing algorithms
in the proposed branch-and-price framework yields the best results in terms of the
average objective value, the average run-time, and the number of instances solved
to proven optimality.

Metaheuristics for Strategic Guidance of Exact Search French et al. [16]
present a GA/B&B hybrid to solve feasibility and optimization IP problems. Their
hybrid algorithm combines the generic B&B of the MIP-solver XPRESS-MP with
a steady-state GA. It starts by traversing the B&B tree. During this phase, infor-
mation from nodes is collected in order to suggest chromosomes to be added to the
originally randomly initialized GA-population. When a certain criterion is fulfilled,
the GA is started using the augmented initial population. When the GA terminates,
its fittest solution is passed back and grafted onto the B&B tree. Full control is given
back to the B&B-engine, after the newly added nodes were examined to a certain
degree. Reported results on MAX-SAT instances show that this hybrid approach
yields better solutions than B&B or the GA alone.

Kotsikas and Fragakis [23] determine improved node selection strategies within
B&B for solving MIPs by using genetic programming (GP). After running B&B
for a certain amount of time, information is collected from the B&B tree and used
as training set for GP, which is performed to find a node selection strategy more
appropriate for the specific problem at hand. The following second B&B phase then
uses this new node selection strategy. Reported results show that this approach has
potential, but needs to be enhanced in order to be able to compete with today’s
state-of-the-art node selection strategies.

http://www.dashoptimization.com/
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Applying the Spirit of Metaheuristics Last but not least, there are a few
approaches where it is tried to bring the spirit of local search based techniques into
B&B. The main idea is to first search some neighborhood of incumbent solutions
more intensively before turning to a classical node selection strategy. However, there
is no explicit metaheuristic, but B&B itself is used for doing the local search. The
metaheuristic may also be seen to be executed in a “virtual” way.

Fischetti and Lodi [15] introduced local branching, an exact approach combining
the spirit of local search metaheuristics with a generic MIP-solver (CPLEX). They
consider general MIPs with 0-1 variables. The idea is to iteratively solve a local
subproblem corresponding to a classical k-OPT neighborhood using the MIP-solver.
This is achieved by introducing a local branching constraint based on an incumbent
solution x, which partitions the search space into the k-OPT neighborhood and the
rest: ∆(x, x) ≤ k and ∆(x, x) ≥ k + 1, respectively, with ∆ being the Hamming
distance of the 0-1 variables. The first subproblem is solved, and if an improved
solution could be found, a new subproblem is devised and solved; this is repeated as
long as an improved solution is found. If the process stops, the rest of the problem
is solved in a standard way. This basic mechanism is extended by introducing time
limits, automatically modifying the neighborhood size k and adding diversification
strategies in order to improve the performance. Reported results are promising.

Danna et al. [10] present an approach called Relaxation Induced Neighborhood
Search (RINS) in order to explore the neighborhoods of promising MIP solutions
more intensively. The main idea is to occasionally devise a sub-MIP at a node of
the B&B tree that corresponds to a certain neighborhood of an incumbent solution:
First, variables having the same values in the incumbent and in the current solution
of the LP-relaxation are fixed. Second, an objective cutoff based on the objective
value of the incumbent is set. Third, a sub-MIP is solved on the remaining variables.
The time for solving this sub-MIP is limited. If a better incumbent could be found
during this process, it is passed to the global MIP-search which is resumed after the
sub-MIP termination. CPLEX is used as MIP-solver. The authors experimentally
compare RINS to standard CPLEX, local branching, combinations of RINS and
local branching, and guided dives. Results indicate that RINS often performs best.

4 Conclusions

We gave a survey on very different, existing approaches for combining exact al-
gorithms and metaheuristics. The two main categories in which we divided these
techniques are collaborative and integrative combinations. Some of the combinations
are dedicated to very specific combinatorial optimization problems, whereas others
are designed to be more generally useful. Altogether, the existing work documents
that both, exact optimization techniques and metaheuristics, have specific advan-
tages which complement each other. Suitable combinations of exact algorithms and
metaheuristics can benefit much from synergy and often exhibit significantly higher
performance with respect to solution quality and time. Some of the presented tech-
niques are mature, whereas others are still in their infancy and need substantial
further research in order to make them fully developed. Future work on such hybrid
systems is highly promising.
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