Unsupervised classification using hidden Markov chain with unknown noise copulas and margins - Archive ouverte HAL
Article Dans Une Revue Signal Processing Année : 2016

Unsupervised classification using hidden Markov chain with unknown noise copulas and margins

Résumé

We consider the problem of unsupervised classification of hidden Markov models (HMC) with dependent noise. Time is discrete, the hidden process takes its values in a finite set of classes, while the observed process is continuous. We adopt an extended HMC model in which the rich possibilities of different kinds of dependence in the noise are modelled via copulas. A general model identification algorithm, in which different noise margins and copulas corresponding to different classes are selected in given families and estimated in an automated way, from the sole observed process, is proposed. The interest of the whole procedure is shown via experiments on simulated data and on a real SAR image.
Fichier principal
Vignette du fichier
SP_2015.pdf (675.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01299009 , version 1 (07-04-2016)

Identifiants

Citer

Stéphane Derrode, Wojciech Pieczynski. Unsupervised classification using hidden Markov chain with unknown noise copulas and margins. Signal Processing, 2016, 128 (11), pp.8-17. ⟨10.1016/j.sigpro.2016.03.008⟩. ⟨hal-01299009⟩
371 Consultations
619 Téléchargements

Altmetric

Partager

More