Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Theoretical Computer Science Année : 2015

Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks

Résumé

We are interested in fixed points in Boolean networks, {\em i.e.} functions $f$ from $\{0,1\}^n$ to itself. We define the subnetworks of $f$ as the restrictions of $f$ to the subcubes of $\{0,1\}^n$, and we characterizes a class $\mathcal{F}$ of Boolean networks satisfying the following property: Every subnetwork of $f$ has a unique fixed point if and only if $f$ has no subnetwork in $\mathcal{F}$. This characterization generalizes the fixed point theorem of Shih and Dong, which asserts that if for every $x$ in $\{0,1\}^n$ there is no directed cycle in the directed graph whose the adjacency matrix is the discrete Jacobian matrix of $f$ evaluated at point $x$, then $f$ has a unique fixed point. Then, denoting by $\mathcal{C}^+$ (resp. $\mathcal{C}^-$) the networks whose the interaction graph is a positive (resp. negative) cycle, we show that the non-expansive networks of $\mathcal{F}$ are exactly the networks of $\mathcal{C}^+\mathcal{C}up \mathcal{C}^-$; and for the class of non-expansive networks we get a ``dichotomization'' of the previous forbidden subnetwork theorem: Every subnetwork of $f$ has at most (resp. at least) one fixed point if and only if $f$ has no subnetworks in $\mathcal{C}^+$ (resp. $\mathcal{C}^-$) subnetwork. Finally, we prove that if $f$ is a conjunctive network then every subnetwork of $f$ has at most one fixed point if and only if $f$ has no subnetworks in $\mathcal{C}^+$.
Fichier principal
Vignette du fichier
1302.6346v3 (1).pdf (502.21 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01298012 , version 1 (05-04-2016)

Identifiants

Citer

Adrien Richard. Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks. Theoretical Computer Science, 2015, 583, pp.1-26. ⟨hal-01298012⟩
129 Consultations
174 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More