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Abstract

We are interested in fixed points in Boolean networks, i.e. functions f from
{0, 1}n to itself. We define the subnetworks of f as the restrictions of f to
the subcubes of {0, 1}n, and we characterizes a class F of Boolean networks
satisfying the following property: Every subnetwork of f has a unique fixed
point if and only if f has no subnetwork in F . This characterization generalizes
the fixed point theorem of Shih and Dong, which asserts that if for every x
in {0, 1}n there is no directed cycle in the directed graph whose the adjacency
matrix is the discrete Jacobian matrix of f evaluated at point x, then f has a
unique fixed point. Then, denoting by C+ (resp. C−) the networks whose the
interaction graph is a positive (resp. negative) cycle, we show that the non-
expansive networks of F are exactly the networks of C+ ∪ C−; and for the class
of non-expansive networks we get a “dichotomization” of the previous forbidden
subnetwork theorem: Every subnetwork of f has at most (resp. at least) one
fixed point if and only if f has no subnetworks in C+ (resp. C−) subnetwork.
Finally, we prove that if f is a conjunctive network then every subnetwork of f
has at most one fixed point if and only if f has no subnetworks in C+.

Keywords: Boolean network, fixed point, feedback circuit

1. Introduction

A function f from {0, 1}n to itself is often seen as a Boolean network with
n components. On one hand, the dynamics of the network is described by
the iterations of f ; for instance, with the synchronous iteration scheme, the
dynamics is described by the recurrence xt+1 = f(xt). On the other hand, the
“structure” of the network is described by a directed graph G(f): The vertices
are the n components, and there exists an arc from j to i when the evolution of
the ith component depends on the evolution of the jth one.

IA preliminary version of this paper [14] was presented at the 17th International Workshop
on Cellular Automata and Discrete Complex Systems (AUTOMATA 2011).
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Boolean networks have many applications. In particular, from the seminal
works of Kauffman [7] and Thomas [22], they are extensively used to model gene
networks. In most cases, fixed points are of special interest. For instance, in the
context of gene networks, they correspond to stable patterns of gene expression
at the basis of particular biological processes.

Importance of fixed point leads researchers to find conditions for the exis-
tence and the uniqueness of a fixed point. Such a condition was first obtained by
Robert [16], who proved that if G(f) has no directed cycle, then f has a unique
fixed point . This result was then generalized by Shih and Dong [20]. They as-
sociated to each point x in {0, 1}n a local interaction graph Gf(x), which is a
subgraph of G(f) defined as the directed graph whose the adjacency matrix is
the discrete Jacobian matrix of f evaluated at point x, and they proved that if
Gf(x) has no directed cycle for all x in {0, 1}n, then f has a unique fixed point .

In this paper, we generalize Shih-Dong’s theorem using, as main tool, the
subnetworks of f , that is, the networks obtained from f by fixing to 0 or 1
some components. The organization is the following. After introducing the
main concepts in Section 2, we formally state some classical results connected
to this work, as Robert’s and Shih-Dong’s theorems. In Section 4, we define
the class F of even and odd-self-dual networks, and we prove the main result
of this paper, the following characterization: f and all its subnetworks have a
unique fixed point if and only if f has no subnetworks in F . The rest of the
paper discusses this “forbidden subnetworks theorem”. In section 5, we show
that it generalizes Shih-Dong’s theorem. More precisely, we show how it can
be used to replace the condition “Gf(x) has no cycles for all x” in Shih-Dong’s
theorem by a weaker condition of the form “Gf(x) has short cycles for few
points x”. In section 6, we study the effect of the absence of subnetwork in
F on the asynchronous state graph of f (which is a directed graph on {0, 1}n
constructed from the asynchronous iterations of f and proposed by Thomas [22]
as a model for the dynamics of gene networks). Section 7 gives some reflexions
on the characterization of properties by forbidden subnetworks. In particular, it
is showed that there is not a lot of properties that are interesting to characterize
in terms of forbidden subnetworks. In Section 8, we compare F with the with
the classes C+ (resp. C−) of networks f such that the interaction graph G(f)
is a positive (resp. negative) cycle. We show that C+ (resp. C−) contains
exactly the non-expansive even-self-dual (resp. odd-self-dual) networks, in such
a way that C+ ∪ C− equals the non-expansive networks of F . This result is
used in Section 9 to obtain a strong version of the main result for non-expansive
networks: If f is non-expansive, then f and all its subnetworks have at least
(resp. at most) one fixed point if and only if f has no subnetworks in C− (resp.
C+). In Section 10, we focus on conjunctive networks. We prove that if f is a
conjunctive network, then f and all its subnetworks have at most one (resp. a
unique) fixed point if and only if f has no subnetworks in C+ (resp. C+ ∪ C−).
Finally, we show that, for conjunctive networks, the absence of subnetwork in
C± can be easily verified from the chordless cycles of G(f).
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2. Preliminaries

2.1. Notations on hypercube

If A and B are two sets, then AB denotes the set of functions from B to A.
Let B = {0, 1} and let V be a finite set. Elements of BV are seen as points of
the |V |-dimensional Boolean space, and the elements of V as the components
(or dimensions) of this space. Given a point x ∈ BV and a component i ∈ V ,
the image of i by x (the i-component of x) is denoted xi or (x)i. The set of
components i such that xi = 1 is denoted 1(x). For all I ⊆ V , we denote by eI
the point of BV such that 1(eI) = I. Points e∅ and eV are often denoted 0 and
1, and we write ei instead of e{i}. Hence, ei may be seen as the base vector of
BV associated with dimension i. For all x ∈ BV , we set ||x|| = |1(x)|. A point x
is said to be even (resp. odd) if ||x|| is even (resp. odd). The sum modulo two is
denoted ⊕. If x and y are two points of BV , then x⊕ y is the point of BV such
that (x ⊕ y)i = xi ⊕ yi for all i ∈ V . The Hamming distance between x and
y is d(x, y) = ||x ⊕ y||. Thus d(x, y) is the number of components i such that
xi 6= yi. In this way ||x|| = d(0, x). For all I ⊆ V and x ∈ BV , the restriction of
x to I is denoted x|I , and the restriction of x to V \ I is denoted x−I . If i ∈ V ,
we write x|i and x−i instead of x|{i} and x−{i}. Also, if α ∈ B then xiα denotes
the point of BV such that (xiα)i = α and (xiα)−i = x−i.

2.2. Networks and subnetworks

A (Boolean) network on V is a function f : BV → BV . The elements of
V are the components or automata of the network, and BV is the set of possible
states or configurations for the network. At a given configuration x ∈ BV , the
state of component i is given by xi. The local transition function associated
with component i is the function fi from BV to B defined by fi(x) = f(x)i for
all x ∈ BV . Throughout this article, f denotes a network on V .

We say that f is non-expansive if

∀x, y ∈ BV , d(f(x), f(y)) ≤ d(x, y).

The conjugate of f is the network f̃ on V defined by

∀x ∈ BV , f̃(x) = f(x)⊕ x.

Let I be a non-empty subset of V and z ∈ BV \I . The subnetwork of f
induced by z is the network h on I defined by

∀x ∈ BV with x−I = z, h(x|I) = f(x)|I .

The subnetwork of f induced by z is thus the network obtained from f by
fixing to zi each component i ∈ V \ I. It can also be seen as the projection
of the restriction of f to the hyperplane defined by the equations “xi = zi”,
i ∈ V \ I. Note that, by definition, f is a subnetwork of itself. A subnetwork of
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f distinct from f is a strict subnetwork. Let i ∈ V , α ∈ B and let z ∈ BV
with zi = α. The subnetwork of f induced by z|i is denoted f iα and called
immediate subnetwork of f induced by the hyperplane “xi = α”. In other
words,

∀x ∈ BV , f iα(x−i) = f(xiα)−i.

2.3. Asynchronous state graph

The asynchronous state graph of f , denoted Γ(f), is the directed graph
with vertex set BV and the following set of arcs:

{x→ x⊕ ei |x ∈ BV , i ∈ V, fi(x) 6= xi}

Remark 1. Our interest for Γ(f) lies in the fact that this state graph has been
proposed by Thomas [22] as a model for the dynamics of gene networks; see also
[24]. In this context, network components correspond to genes. At a given state
x, the protein encoded by gene i is “present” if xi = 1 and “absent” if xi = 0.
The gene i is “on” (transcripted) if fi(x) = 1 and “off” (not transcripted) if
fi(x) = 0. And given an initial configuration x, the possible evolutions of the
system are described by the set of paths of Γ(f) starting from x.

The terminal strongly connected components of Γ(f) are called attractors.
An attractor is cyclic if it contains at least two points, and it is punctual
otherwise. Hence, {x} is a punctual attractor of Γ(f) if and only if x is a fixed
point of f , so both concepts are identical.

Proposition 1. Let I be non-empty subset of V and let h be the subnetwork
of f induced by some point z ∈ BV \I . The asynchronous state graph of h is
isomorphic to the asynchronous state graph of f induced by the set of points
x ∈ BV such that x−I = z (the isomorphism is x 7→ x−I).

Proof. For all x, y ∈ BV with x−I = y−I = z, and for all i ∈ I, we have
y = x⊕ ei if and only if x|I = y|I ⊕ ei, thus x→ y is an arc of Γ(f) if and only
if x−I → y−I is an arc of Γ(h).

2.4. Criticality

We say that f is critical for a property P, if f has the property P but no
strict subnetworks of f have this property. Let P2 be the property “to have at
least two fixed points”, and let P0 be the property “to have no fixed point”. We
say that f is 2-critical if f is critical for the property P2, and we say that f
is 0-critical if f is critical for the property P0. Clearly, if f is 2-critical, then
there exists x ∈ BV such that x and x⊕ 1 are fixed points, and f has no other
fixed point (because if x and y are two fixed points and xi = yi = α then x−i
and y−i are fixed points of f iα).

Proposition 2. Let f be a network on V .

1. If the asynchronous state graph of f has multiple attractors, then f has a
2-critical subnetwork.
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2. If f is non-expansive and if the asynchronous state graph of f has a cyclic
attractor, then f has no fixed point and thus has a 0-critical subnetwork.

Proof. Suppose that Γ(f) has two distinct attractors X,Y ⊆ BV . Let x ∈ X and
y ∈ Y be such that d(x, y) is minimal. Let I = 1(x⊕ y) so that x−I = y−I = z.
Let h be the subnetwork of f induced by z. Suppose that x|I is not a fixed
point of h. Then, there exists i ∈ I with xi 6= hi(x|I) = fi(x). Thus Γ(f) has
an arc x → x ⊕ ei and x ⊕ ei ∈ X because x ∈ X. Since xi 6= yi, we have
d(x ⊕ ei, y) < d(x, y), a contradiction. Thus x|I is a fixed point of h, and we
prove with similar arguments that y|I is a fixed point of h. Thus h has multiple
fixed points. Thus h has necessarily a 2-critical subnetwork g, and since g is a
subnetwork of f the first point is proved.

For the second point, suppose in addition that f is non-expansive, that Y is
a cyclic attractor (i.e. |Y | > 1) and that X is punctual i.e. reduces to a fixed
point x of f . Since y|I is a fixed point of h, we have y|I = f(y)|I and using the
fact that f is non expansive we get

d(f(x), f(y)) = d(x, f(y)) = d(x|I , f(y)|I) + d(x−I , f(y)−I) =

d(x|I , y|I) + d(y−I , f(y)−I) = |I|+ d(y−I , f(y)−I) ≤ d(x, y) = |I|.

Thus d(y−I , f(y)−I) = 0 so y−I = f(y)−I . Consequently, y is a fixed point of
f , and Y cannot be cyclic, a contradiction. Consequently, if f is non-expansive
and if Y is a cyclic attractor, then X is also a cyclic attractor, so f has no fixed
point and thus it has necessarily a 0-critical subnetwork.

2.5. Interaction graphs

Notions and notations concerning digraphs are consistent with [3]. In partic-
ular, cycles and paths are seen as digraphs and thus have no repeated vertices.
A signed digraph G = (V,A) consists in a set of vertices V and a set of
(signed) arcs A ⊆ V × {−1, 1} × V . An arc (i, s, j) ∈ A is an arc from i to
j of sign s. We say that G is simple if for every vertices i, j ∈ V there is at
most one arc from i to j. The (unsigned) digraph obtained by forgetting signs
is denoted |G|: The vertex set of |G| is V and the arc set of |G| is the set of
couples (i, j) such that G has at least one arc from i to j. A signed digraph
G′ = (V ′, A′) is a subgraph of G (notation G′ ⊆ G) if V ′ ⊆ V and A′ ⊆ A. A
cycle of G is a simple subgraph C of G such that |C| is a directed cycle. A
positive (resp. negative) cycle of G is a cycle of G with an even (resp. odd)
number of negative arcs. A cycle of C of G is chordless if |C| is an induced
subgraph of |G| (i.e. |C| can be obtained from |G| be removing vertices only).

Let f be a network on V and two components i, j ∈ V . The discrete
derivative of fi with respect to j is the function fij from BV to {−1, 0, 1}
defined by

∀x ∈ BV , fij(x) = fi(x
j1)− fi(xj0).
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Discrete derivatives are usually stored under the form of a matrix, the Jacobian
matrix. However, for our purpose, it is more convenient to store them under
the form of a signed digraph.

For all x ∈ BV , we call local interaction graph of f evaluated at point x,
and we denote by Gf(x), the signed digraph with vertex set V such that, for
all i, j ∈ V , there is a positive (resp. negative) arc from j to i if fij(x) positive
(resp. negative). Note that Gf(x) is simple. The (global) interaction graph
of f is the signed digraph denoted by G(f) and defined by: The vertex set is V
and, for all vertices i, j ∈ V , there is a positive (resp. negative) arc from j to
i if fij(x) is positive (resp. negative) for at least one x ∈ BV . Thus each local
interaction graph Gf(x) is a subgraph of the global interaction graph G(f).
More precisely, G(f) is obtained by taking the union of all the Gf(x).

Proposition 3. Let I be non-empty subset of V and let h be the subnetwork of
f induced by some point z ∈ BV \I , and let x ∈ BV with x−I = z. Then:

1. Gh(x|I) is an induced subgraph of Gf(x);

2. G(h) is a subgraph of G(f).

Proof. If x ∈ BV and x−I = z, then for all i, j ∈ I,

hij(x|I) = hi(x
j1|I)− hi(xj0|I) = fi(x

j1)− fi(xj0) = fij(x).

This proves 1. and 2. is an obvious consequence.

3. Some fixed point theorems

Robert proved in 1980 the following fundamental fixed point theorem [16,
17]. A short proof is given in Appendix A (this proof uses an induction on
subnetworks, a technic used in almost all proofs of this paper).

Theorem 1 (Robert 1980). If G(f) has no cycle then f has a unique fixed
point.

Robert also proved, in his french book [18], that if G(f) has no cycle, then Γ(f)
has no cycle, so that every path of Γ(f) leads to the unique fixed point of f
(strong convergence toward a unique fixed point).

The following theorem, proved by Aracena [1] (see also [2]) in a slightly differ-
ent setting, gives other very fundamental relationships between the interaction
graph of f and its fixed points.

Theorem 2 (Aracena 2008). Suppose that G(f) is strongly connected (and
contains at least one arc).

1. If G(f) has no negative cycle then f has at least two fixed points.

2. If G(f) has no positive cycle then f has no fixed point.
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The following theorem can be deduce from Aracena theorem with an induc-
tion on strongly connected components of G(f), see Appendix A. It gives a
nice “proof by dichotomy” of Robert’ theorem: The existence of a fixed point
is established under the absence of negative cycle while the unicity under the
absence of positive cycle.

Theorem 3.

1. If G(f) has no positive cycle then f has at most one fixed point.

2. If G(f) has no negative cycle then f has at least one fixed point.

First point of Theorem 3 can be seen as a Boolean version of first Thomas’ rule,
which asserts that the presence of a positive cycles in the interaction graph of a
dynamical system is a necessary conditions for the presence of multiple stable
states [23] (see also [8] and the references therein).

Second Thomas’ rule asserts that the presence of a negative cycle is a nec-
essary condition for the presence of cyclic attractors [23, 8]. Hence, the next
theorem, proved in [12], can be see as a Boolean version of second Thomas’ rule.

Theorem 4 (Richard 2010). If G(f) has no negative cycle, then Γ(f) has no
cyclic attractors.

Note that this theorem generalizes the second point of Theorem 3: If Γ(f) has no
cyclic attractor, then all the attractors are fixed points, and since there always
exists at least one attractor, f has at least one fixed point.

The next theorem is a “local version” of Robert’s theorem. It has been
conjectured and presented as a combinatorial analog of the Jacobian conjecture
in [21]. It has be proved by Shih and Dong in [20].

Theorem 5 (Shih and Dong 2005). If Gf(x) has no cycle for all x ∈ BV , then
f has a unique fixe point.

This theorem generalizes Robert’s one: If G(f) has no cycle, then it is clear that
each local interaction graph Gf(x) has no cycle (because Gf(x) ⊆ G(f)). The
original proof of Shih and Dong is quite involved. A much more simple proof is
given in Appendix A.

In a similar way, Remy, Ruet and Thieffry [11] proved a local version of the
first point of Theorem 3. They thus got the uniqueness part of Shih-Dong’s
theorem under weaker conditions.

Theorem 6 (Remy, Ruet and Thieffry 2008). If Gf(x) has no positive cycle
for all x ∈ BV , then f has at most one fixed point.

In view of the previous theorem, it very natural think about a local version
of the second point of Theorem 3.

Question 1. Is it true that if Gf(x) has no negative cycle for all x ∈ BV , then
f has at least one fixed point?
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The following theorem, proved in [13], only gives a very partial answer to
this question (see [15] for another very partial answer).

Theorem 7 (Richard 2011). If f is non-expansive and if Gf(x) has no negative
cycle for all x ∈ BV , then f has at least one fixed point.

Remark 2. In all the theorems, Aracena one excepted, if the conditions are
satisfied by f then they are also satisfied by every subnetwork of f , in such a
way that conclusions apply to f and all its subnetworks. For instance, if G(f)
has no cycle, then the interaction graph G(h) every subnetwork h of f has no
cycle (since G(h) ⊆ G(f)), and by Robert’s theorem, every subnetwork h of f
has a unique fixed point. Such a remark is also valid for Theorem 7, because if
f is non-expansive then all its subnetworks are non-expansive too.

Remark 3. Using the previous remark, we deduce from Theorem 5 (resp. The-
orem 6) that if Gf(x) has no cycle (resp. no positive cycle) for all x ∈ BV , then
every subnetwork of f has a unique (resp. at most one) fixed point, and thus,
following Proposition 2, Γ(f) has a unique attractor (resp. at most one attrac-
tor).

Remark 4. Proceeding in a similar way, we deduce from Theorem 7 and Propo-
sition 2 the following local version of second Thomas’ rule for non-expansive net-
works: If f is non-expansive and if Gf(x) has no negative cycle for all x ∈ BV ,
then Γ(f) has no cyclic attractors.

4. A forbidden subnetwork theorem

In this section, we introduce the class F of even- and odd-self dual networks,
and we prove that it has the following property: Every subnetworks of f (and f
itself in particular) has a unique fixed point if and only if f has no subnetwork
in F .

We say that f is self-dual if

∀x ∈ BV , f(x⊕ 1) = f(x)⊕ 1.

Equivalently, f is self-dual if f̃(x⊕ 1) = f̃(x) for all x ∈ BV .

We say that f is even if the image set of f̃ is the set of even points of BV ,
that is,

f̃(BV ) = {x ∈ BV | ||x|| is even}

and similarly, we say that f is odd if

f̃(BV ) = {x ∈ BV | ||x|| is odd}.

Thus, if f is even, then there exists x ∈ BV such that f̃(x) = 0, which is
equivalent to say that f(x) = x. Hence, even networks have at least one fixed
point. Obviously, odd networks have no fixed point.
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We say that f is even-self-dual (resp. odd-self-dual) if it is both even
(resp. odd) and self dual. We will often implicitly use the following characteri-
zation: f is even-self-dual (resp. odd-self-dual) if and only if

∀z ∈ BV s.t. ||z|| is even (resp. odd), ∃x ∈ BV s.t. f̃−1(z) = {x, x⊕ 1}.

It follows that if f is even-self-dual then it has exactly two fixed points.

Our interest for even- or odd-self-dual networks lies in the following theorem,
which is the main result of this paper.

Theorem 8. If f has no even- or odd-self-dual subnetwork, then the conjugate
of f is a bijection.

The proof needs the following two lemmas.

Lemma 1. Let X be a non-empty subset of BV and

N(X) = {x⊕ ei |x ∈ X, i ∈ V }.

If X and N(X) are disjoint and |X| ≥ |N(X)|, then X is either the set of even
points of BV or the set of odd points of BV .

Proof. by induction on |V |. The case |V | = 1 is obvious. So suppose that
|V | > 1. Let X be a non-empty subset of BV satisfying the conditions of the
statement. Let i ∈ V and α ∈ B. For all Y ⊆ BV , let us denote by Y α be the
subset of BV \{i} defined by Y α = {x−i |x ∈ Y, xi = α}.

We first prove that N(Xα) ⊆ N(X)α and Xα ∩ N(Xα) = ∅. Let x ∈ BV
with xi = α be such that x−i ∈ N(Xα). To prove that N(Xα) ⊆ N(X)α, it is
sufficient to prove that x−i ∈ N(X)α. Since x−i ∈ N(Xα), there exists y ∈ BV
with yi = α and j ∈ V with j 6= i such that y−i ∈ Xα and x−i = y−i ⊕ ej .
So x = y ⊕ ej , and since yi = α, we have y ∈ X. Hence x ∈ N(X) and since
xi = α, we have x−i ∈ N(X)α. We now prove that Xα ∩N(Xα) = ∅. Indeed,
otherwise, there exists x ∈ BV with xi = α such that x−i ∈ Xα∩N(Xα). Since
N(Xα) ⊆ N(X)α, we have x−i ∈ Xα ∩ N(X)α, and since xi = α, we deduce
that x ∈ X ∩N(X), a contradiction.

Since N(Xα) ⊆ N(X)α, we have

|X| = |X0|+ |X1| ≥ |N(X)| = |N(X)0|+ |N(X)1| ≥ |N(X0)|+ |N(X1)|.

So |X0| ≥ |N(X0)| or |X1| ≥ |N(X1)|. Suppose that |X0| ≥ |N(X0)|, the other
case being similar. Since X0∩N(X0) = ∅, by induction hypothesis X0 is either
the set of even points of BV \{i} or the set of odd points of BV \{i}. So in both
cases, we have |X0| = |N(X0)| = 2|V |−1. We deduce that |X1| ≥ |N(X1)|, and
so, by induction hypothesis, X1 is either the set of even points of BV \{i} or the
set of odd points of BV \{i}. But X0 and X1 are disjointed: For all x ∈ BV , if
x−i ∈ X0∩X1, then xi0 and xi1 are two points of X, and xi1 = xi0⊕ei ∈ N(X),
a contradiction. So if X0 is the set of even (resp. odd) points of BV \{i}, then
X1 is the set of odd (resp. even) points of BV \{i}, and we deduce that X is the
set of even (resp. odd) points of BV .
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Lemma 2. Suppose that the conjugate of every immediate subnetwork of a
network f is a bijection. If the conjugate of f is not a bijection, then f is even-
or odd-self-dual.

Proof. Suppose that f : BV → BV satisfies the conditions of the statement, and
suppose that the conjugate f̃ of f is not a bijection. Let

X = f̃(BV ), X̄ = BV \X.

Since f̃ is not a bijection, X̄ is not empty.

Let us first prove that

∀x ∈ X̄, ∀i ∈ V, |f̃−1(x⊕ ei)| = 2. (∗)

Let x ∈ X̄ and i ∈ V . By hypothesis, f̃ i0 is a bijection, so there exists a unique
point y ∈ BV with yi = 0 such that f̃ i0(y−i) = x−i. Then, f̃(y)−i = f̃(yi0)−i =
f̃ i0(y−i) = x−i. In other words f̃(y) ∈ {x, x ⊕ ei}. Since x ∈ X̄ we have
f̃(y) 6= x and it follows that f̃(y) = x ⊕ ei. Hence, we have proved that there
exists a unique point y ∈ BV such that yi = 0 and f̃(y) = x⊕ ei, and we prove
with similar arguments that there exists a unique point z ∈ BV such that zi = 1
and f̃(z) = x⊕ ei. This proves (∗).

We are now in position to prove that f is even or odd. Let

N(X̄) = {x⊕ ei |x ∈ X̄, i ∈ V }.

Following (∗) we have N(X̄) ⊆ X, and we deduce that

|f̃−1(X)| = |f̃−1(N(X̄))|+ |f̃−1(X \N(X̄))|

≥ |f̃−1(N(X̄))|+ |X \N(X̄)|

= |f̃−1(N(X̄))|+ |X| − |N(X̄)|.

Again following (∗), |f̃−1(N(X̄))| = 2|N(X̄)| and we deduce that

|X| + |X̄| = 2|V | = |f̃−1(X)| ≥ 2|N(X̄)| + |X| − |N(X̄)| = |N(X̄)| + |X|.

Therefore, |X̄| ≥ |N(X̄)|, and since N(X̄) ⊆ X = B|V |\X̄, we have X̄∩N(X̄) =
∅. So according to Lemma 1, X̄ is either the set of even points of B|V | or the
set of odd points of B|V |. We deduce that in the first (second) case, X is the
set of odd (even) points of B|V |. Thus, f is even or odd.

It remains to prove that f is self-dual. Let x ∈ BV . For all i ∈ V , since ||f̃(x)||
and ||f̃(x) ⊕ ei|| have not the same parity, and since f is even or odd, we have
f̃(x)⊕ ei ∈ X̄. Thus, according to (∗), the preimage of (f̃(x)⊕ ei)⊕ ei = f̃(x)
by f̃ is of cardinality two. Consequently, there exists a point y ∈ B|V |, distinct
from x, such that f̃(y) = f̃(x). Let us proved that x = y ⊕ 1. Indeed, if
xi = yi = 0 for some i ∈ V , then f̃ i0(x−i) = f̃(x)−i = f̃(y)−i = f̃ i0(y−i). Since
x 6= y, we deduce that f̃ i0 is not a bijection, a contradiction. We show similarly
that if xi = yi = 1, then f̃ i1 is not a bijection. So x = y ⊕ 1. Consequently,
f̃(x⊕ 1) = f̃(x), and we deduce that f is self-dual.
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Proof of Theorem 8. by induction on |V |. The case |V | = 1 is obvious. So
suppose that |V | > 1 and suppose that f has no even- or odd-self-dual subnet-
work. Under this condition, f is neither even-self-dual nor odd-self-dual (since
f is a subnetwork of f), and every immediate subnetwork of f has no even- or
odd-self-dual subnetwork. So, by induction hypothesis, the dual of every strict
subnetwork of f is a bijection, and we deduce from Lemma 2 that the dual of
f is a bijection.

Corollary 1. The conjugate of each subnetwork of f is a bijection if and only
if f has no even- or odd-self-dual subnetworks.

Proof. If f has no even- or odd-self-dual subnetwork, then every subnetwork h
of f has no even- or odd-self-dual subnetwork, and according to Theorem 8, the
conjugate of h is a bijection. Conversely, if the conjugate of each subnetwork of
f is a bijection, then f has clearly no even- or odd-self-dual subnetwork (since if
a network is even or odd, its conjugate sends BV to a subset of BV of cardinality
|BV |/2).

If f̃ is a bijection then there is a unique point x ∈ BV such that f̃(x) = 0,
and this point is thus the unique fixed point of f . As an immediate consequence
of this property and the previous corollary, we obtain the characterization men-
tioned at the beginning of the section.

Corollary 2. Each subnetwork of f has a unique fixed point (f in particular)
if and only if f has no even- or odd-self-dual subnetworks.

Remark 5. As an immediate consequence of the two previous corollary, we get
the following property, independently proved by Ruet in [19]: Each subnetwork
of f has a unique fixed point if and only if the conjugate of each subnetwork of
f is a bijection.

Example 1. Consider the following network f on {1, 2, 3} 1:

f : B{1,2,3} → B{1,2,3}
f1(x) = x2 ∧ x3
f2(x) = x3 ∧ x1
f3(x) = x1 ∧ x2.

1In all the examples, network components are integers, and if V is a set of n integers
i1<i2< · · ·<in, then for all x ∈ BV we write x = (xi1 , xi2 , . . . , xin ) or x = xi1xi2 . . . xin .
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The table of f and f̃ are:

x f(x) f̃(x)
000 000 000
001 100 101
010 001 011
011 001 010
100 010 110
101 100 001
110 010 100
111 000 111

The six immediate subnetworks of f are:

f10 : B{2,3} → B{2,3}
f102 (x) = x3 ∧ 0 = 0

f103 (x) = 0 ∧ x2 = x2

f11 : B{2,3} → B{2,3}
f112 (x) = x3 ∧ 1 = x3

f113 (x) = 1 ∧ x2 = 0

f20 : B{1,3} → B{1,3}
f201 (x) = 0 ∧ x3 = x3

f203 (x) = x1 ∧ 0 = 0

f21 : B{1,3} → B{1,3}
f211 (x) = 1 ∧ x3 = 0

f213 (x) = x1 ∧ 1 = x1

f30 : B{1,2} → B{1,2}
f301 (x) = x2 ∧ 0 = 0

f302 (x) = 0 ∧ x1 = x1

f31 : B{1,2} → B{1,2}
f311 (x) = x2 ∧ 1 = x2

f312 (x) = 1 ∧ x1 = 0

So each immediate subnetwork f iα of f has one component fixed to zero, so f has
no self-dual immediate subnetwork. Furthermore, each immediate subnetwork
of f iα is a constant (0), and thus is not self-dual. Furthermore, f is not self-dual
since f(000) = f(111) = 111. Hence, f has no self-dual subnetwork, and we
deduce from Theorem 8 that the conjugate of f̃ of f is a bijection. This can be
easily verified on the table given above.

5. Generalization of Shih-Dong’s theorem

In this section, we show, using Theorem 8, that the condition “Gf(x) has
no cycles for all x” in Shih-Dong’s theorem (Theorem 5) can be weakened into
a condition of the form “Gf(x) has short cycles for few points x”. The exact
statement is given after the following useful proposition.

Proposition 4. If f is even or odd, then for every x ∈ BV the out-degree of
each vertex of Gf(x) is odd. In particular, Gf(x) has a cycle.
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Proof. Let j ∈ V and let d be the out-degree of j in Gf(x). Since d equals the
number of i ∈ V such that |fij(x)| = 1, and since

|fij(x)| = fi(x
j1)⊕ fi(xj0) = fi(x)⊕ fi(x⊕ ej),

we have
d = ||f(x)⊕ f(x⊕ ej)||

= ||(x⊕ f̃(x))⊕ ((x⊕ ej)⊕ f̃(x⊕ ej))||
= ||f̃(x)⊕ f̃(x⊕ ej)⊕ ej ||.

So the parity of d is the parity of ||f̃(x)||+ ||f̃(x⊕ ei)||+ 1. Hence, if f is even or
odd, then ||f̃(x)|| and ||f̃(x⊕ ei)|| have the same parity, so ||f̃(x)||+ ||f̃(x⊕ ei)||
is even, and it follows that d is odd.

Corollary 3. If, for every 1 ≤ k ≤ |V |, there exists at most 2k − 1 points
x ∈ BV such that Gf(x) has a cycle of length at most k, then f has a unique
fixed point.

Proof. According to Theorem 8, it is sufficient to prove, by induction on |V |,
that if f satisfies the conditions of the statement, then f has no even- or odd-self-
dual subnetwork. The case |V | = 1 is obvious, so suppose that |V | > 1. Suppose
also that f satisfies the conditions of the statement. Let i ∈ V and α ∈ B. Since
Gf iα(x−i) is the subgraph of Gf(xiα) for all x ∈ BV (cf. Proposition 3), f iα

satisfies the condition of the theorem. Thus, by induction hypothesis, f iα has
no even- or odd-self-dual subnetwork. So f has no even- or odd-self-dual strict
subnetwork. If f is itself even- or odd-self-dual, then by Proposition 4, Gf(x) has
a cycle for every x ∈ BV , so f does not satisfy that conditions of the statement
(for k = |V |). Therefore, f has no even- or odd-self-dual subnetwork.

Example 2. [Continuation of Example 1] Take again the 3-dimensional network
f defined by

f1(x) = x2 ∧ x3
f2(x) = x3 ∧ x1
f3(x) = x1 ∧ x2.

We have seen that f has no self-dual subnetwork. So it satisfies the conditions
of Theorem 8, but not the conditions of Shih-Dong’s theorem. Indeed, Gf(000)
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and Gf(111) have a cycle 2:

Gf(000)

1

23

Gf(001)

1

23

Gf(010)

1

23

Gf(011)

1

23

Gf(100)

1

23

Gf(101)

1

23

Gf(110)

1

23

Gf(111)

1

23

However, f satisfies the condition of Corollary 3 (there is 0 < 21 point x such
that Gf(x) has a cycle of length at most 1, 0 < 22 point x such that Gf(x) has
a cycle of length at most 2, and 2 < 23 points x such that Gf(x) has a cycle of
length at most 3). From the local interactions graphs given above, we deduce
that the global interaction graph G(f) of the network is the following:

1

23

In addition to Proposition 4, we have the following property on the structure
of the interactions of even- and odd-self-dual networks.

Proposition 5. If f is a critical even- or odd-self-dual network then G(f) is
strongly connected.

Proof. Suppose that f is critical even- or odd-self-dual. If G(f) is not strongly
connected, then it has an initial strongly connected component I (no arc from
V \I to I) strictly included in V . Let h be the subnetwork of f induced by some
point z ∈ BI . Since f is critical and since h is a strict subnetwork, according
to Theorem 8, h̃ is a bijection. Thus there exists x, y ∈ BV with x|I = y|I = z,
such that h̃(x−I) and h̃(y−I) have not the same parity. Since f̃(x)−I = h̃(x−I)
and f̃(y)−I = h̃(y−I) we have

||f̃(x)|| = ||f̃(x)|I ||+ ||h̃(x−I)||, ||f̃(y)|| = ||f̃(y)|I ||+ ||h̃(y−I)||.

SinceG(f) has no arc from V \I to I, and since x|I = y|I we have f(x)|I = f(y)|I
and thus f̃(x)|I = f̃(y)|I . Thus f̃(x) and f̃(y) have not the same parity, a
contradiction.

2Arrows correspond to positive arcs and bars to negative arcs.
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6. Weak asynchronous convergence

We say that the asynchronous state graph Γ(f) describes a strong asyn-
chronous convergence toward a unique fixed x if Γ(f) is acyclic and admits
x as unique attractor. We say that Γ(f) describes a weak asynchronous con-
vergence toward a unique fixed point x if Γ(f) admits x as unique attractor
(equivalently, f has a unique fixed point x and Γ(f) has a path from any point y
to x). The following corollary shows that the absence of even- or odd-self-dual
subnetwork implies a weak asynchronous convergence toward a unique fixed
point.

Corollary 4. If f has no even or odd self-dual subnetwork, then f has a unique
fixed point x, and for all y ∈ BV , the asynchronous state graph of f contains a
path from y to x of length d(x, y).

Remark 6. By definition, if x→ y is an arc of the asynchronous state graph,
then d(x, y) = 1. Hence, path from a point x to a point y cannot be of length
strictly less than d(x, y); a path from x to y of length d(x, y) can thus be seen
as a shortest or straight path.

Proof of Corollary 4. By induction on |V |. The case |V | = 1 is obvious, so
suppose that |V | > 1 and that f has no even or odd self-dual subnetwork. By
Theorem 8, f has a unique fixed point x. Let y ∈ BV . Suppose first that there
exists i ∈ V such that xi = yi = 0. Then x−i is the unique fixed point of
f i0. So, by induction hypothesis, Γ(f i0) has a path from y−i to x−i of length
d(x−i, y−i). Since xi = yi = 0, we deduce from Proposition 1 that Γ(f) has
a path from y to x of length d(x−i, y−i) = d(x, y). The case xi = yi = 1 is
similar. So, finally, suppose that y = x ⊕ 1. Since y is not a fixed point, there
exists i ∈ V such that fi(y) 6= yi. Then, Γ(f) has an arc from y to z = y ⊕ ei.
So zi = xi, and as previously, we deduce that Γ(f) has a path from z to x of
length d(x, z). This path together with the arc y → z forms a path from y to x
of length d(x, z) + 1 = d(x, y).

Remark 7. According to Proposition 1, the asynchronous state graph Γ(h) of
each subnetwork h of f is a subgraph of Γ(f) induced by some subcube of BV .
Hence, one can see Γ(h) as a “dynamical module” of Γ(f). An interpretation
of the previous corollary is then that the asynchronous state graphs of even-
and odd-self-dual networks are “dynamical modules” that are necessary for the
“emergence” of “complex” asynchronous behaviors, because in their absence the
dynamics is “simple”: weak asynchronous convergence toward a unique fixed
point.

Example 3. [Continuation of Example 1] Take again the 3-dimensional network
f defined in Example 1, which has no self-dual subnetwork.

f1(x) = x2 ∧ x3
f2(x) = x3 ∧ x1
f3(x) = x1 ∧ x2.
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The asynchronous state graph Γ(f) of f is the following:

x f(x) f̃(x)
000 000 000
001 100 101
010 001 011
011 001 010
100 010 110
101 100 001
110 010 100
111 000 111

000

001

010

011

100

101

110

111

In agreement with Corollary 4, there exists, from any initial point, a shortest
path leading to the unique fixed point of f (the point 000): the asynchronous
state graph describes a weak asynchronous convergence (by shortest paths) to-
ward a unique fixed point. However, Γ(f) has a cycle (of length 6), so every
path does not lead to the unique fixed point: the condition “has no even or
odd self-dual subnetworks” does no ensure a strong asynchronous convergence
toward a unique fixed point.

7. Characterization by forbidden subnetworks

In this section, we are interested in characterizing networks properties by
forbidden subnetworks, such as the characterization given by Corollary 2. We
see a network property P as a set of networks, and given a set of networks F ,
we say that F is a set of forbidden subnetworks for P if

f ∈ P ⇐⇒ sub(f) ∩ F = ∅,

where sub(f) denotes the set of subnetworks of f . Thus, if F is a set of forbidden
subnetworks for P then F ∩P = ∅ and P is closed for the subnetwork relation
i.e. if f ∈ P then sub(f) ⊆ P. The negation (or complement) of P is denoted
¬P.

Proposition 6. Let P be a set of networks closed for the subnetwork relation.
There exists a unique smallest set F of forbidden subnetworks for P. This set
F is the set of networks critical for ¬P.

Proof. If f 6∈ P, then f necessarily contains a subnetwork h 6∈ P such that
sub(h) \ h ⊆ P i.e. a subnetwork critical for ¬P. Conversely, if f ∈ P then
sub(f) ⊆ P and since networks critical for ¬P are in ¬P, f has no subnetworks
critical for ¬P. This proves that the set of networks critical for ¬P is a set of
forbidden subnetworks for P.

Now, suppose that F is a set of forbidden subnetworks for P, let f be
any network critical for ¬P, and let us prove that f ∈ F . Since every strict
subnetwork of f is in P, f has no strict subnetworks in F . So if f is not in F
then sub(f) ∩ F = ∅ and we deduce that f ∈ P, a contradiction. Thus f ∈ F ,
so F contains all the networks critical for ¬P.
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Let P=1 be the set of networks f such that each subnetwork of f has a
unique fixed point, and let F=1 be the smallest set of forbidden subnetworks for
P=1. Let Fesd and Fosd be the set of critical even- and odd-self-dual networks,
respectively, and let Feosd = Fesd ∪ Fosd.

Remark 8. A lot of even- or odd-self-dual networks are not critical. For
instance, the network f on {1, 2, 3} defined by f1(x) = x1 ⊕ x2 ⊕ x3 and
f2(x) = f3(x) = x1 is even-self-dual, but it contains two even-self-dual strict
subnetworks and two odd-self-dual strict subnetworks.

Corollary 5. F=1 = Feosd.

Proof. If f ∈ Feosd, then not strict subnetwork of f is in Feosd and according
to Theorem 8, each strict subnetwork of f is in P=1. Since f 6∈ P=1 (because
f has zero or two fixed points), f is critical for ¬P=1, and it follows from the
previous proposition that f ∈ F=1. Thus Feosd ⊆ F=1. Now, by Theorem 8,
Feosd is a set of forbidden subnetworks for P, and we deduce from the previous
proposition that F=1 ⊆ Feosd.

Let P≤1 (resp. P≥1) be the set of networks f such that each subnetwork of f
has at most (resp. at least) one fixed point; and let F≤1 and F≥1 be the smallest
sets of forbidden subnetworks for P≤1 and P≥1, respectively. In the light of the
“proof by dichotomy” of Robert’s theorem (given by Theorem 3) it is tempting
to try to deduce that Feosd is the smallest set of forbidden subnetworks for
P=1 from the forbidden sets F≤1 and F≥1. But this is not so simple. Indeed,
F≤1 ∪F≥1 is clearly a set of forbidden subnetworks for P≤1 ∩P≥1 = P=1, thus
Feosd ⊆ F≤1 ∪ F≥1, but the inclusion is strict: A lot of networks critical for
¬P≤1 or ¬P≥1 are not critical for ¬P=1 (because any network that is critical for
¬P≤1 (resp. ¬P≥1) and that contains a subnetworks with no (resp. multiple)
fixed point is not critical for ¬P=1). Examples are given below.

However, in Section 9, we will see that, if we consider the class of non-
expansive networks, then Fesd = F≤1 and Fosd = F≥1, so that the the equality
Feosd = F≤1 ∪ F≥1 holds. Also, in Section 10, we will se that Fesd = F≤1
for another class of networks (the conjunctive networks), and we will leave the
equality Fosd = F≥1 has an open problem for this class.

Remark 9. f is critical for ¬P≤1 if and only if f has at least two fixed points,
and every strict subnetwork of f has at most one fixed points. In other words,
F≤1 is the set of 2-critical networks. And similarly, F≥1 is the set of 0-critical
networks.

Among network properties closed for subnetworks, P=1, P≤1 and P≥1 are
not “very strong”, and this is why it is interesting to characterize them in
terms of forbidden subnetworks. By opposition, closed property as P>1 (every
subnetwork has at least two fixed points) or P<1 (every subnetwork has no
fixed points) are not interesting. To see this, consider the two one-dimensional
constant networks zero(x) = 0 and one(x) = 1. Clearly zero and one have
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a unique fixed point and are thus critical for P>1 or P<1. Consequently, zero
and one are in the smallest forbidden set of subnetworks for P>1 and P<1.
But it is easy to see that networks without zero or one as subnetwork are
(exactly) networks f such that f̃ is a constant, and restrict our attention to
this type of networks is not interesting. Actually, even if only zero or only
one is forbidden, the resulting networks are too particular to be interesting.
In other words: Interesting closed properties must be satisfied by zero and
one. An interesting property different from P=1, P≤1 and P≥1, is for example
“each subnetwork has an asynchronous state graph which describes a strong
convergence toward a unique fixed point”. Hence, it would be interesting to
characterize the set of forbidden subnetworks for this property.

Example 4. The following network f is 2-critical (i.e. in F≤1) but not even
(double arrows indicate cycles of length two):

x f(x) f̃(x)
000 000 000
001 110 111
010 101 111
011 100 111
100 011 111
101 010 111
110 001 111
111 111 000

Γ(f)

000

001

010

011

100

101

110

111

The following network f is 0-critical (i.e. in F≥1) but not odd:

x f(x) f̃(x)
000 110 110
001 101 100
010 011 001
011 001 010
100 110 010
101 100 001
110 010 100
111 001 110

Γ(f)

000

001

010

011

100

101

110

111

8. Circular networks and non expansive networks

A positive-circular (resp. negative-circular) network is a network f such
that G(f) is a positive (resp. negative) cycle. Positive- and negative-circular
networks have been widely studied (e.g. [9, 4]) because that are the “simplest
non simple networks” in the sense that they are the most simple networks (from
a structural point of view) that do not describe a convergence toward a unique
fixed point.
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In this section, we show that positive-circular (resp negative-circular) net-
works are even-self-dual (resp. odd-self-dual), and we prove that the converse
holds for non-expansive networks (cf. Theorem 9 below). In this way, even- and
odd-self-dual network may be seen as generalization of circular networks.

Suppose that f is a circular network. Let σ be the permutation of V that
maps every vertex i to the vertex σ(i) preceding i in G(f). For each x ∈ BV ,
let us denote by σx the point of BV such that (σx)i = xσ(i) for all i ∈ V . Let
s ∈ BV be the such that for all i ∈ V , si = 0 if the arc from σ(i) to i is positive
and si = 1 otherwise. Then, for all x ∈ BV , we have

f(x) = σx⊕ s.

We call σ the permutation of f and s the constant of f . Since G(f) only
depends on f , since the couple (σ, s) only depends on G(f) and since f only
depends on this couple, these three objects share the same information. In
particular the sign of G(f) is “contained” in s: It is positive if ||s|| is even, and
negative if ||s|| is odd.

Theorem 9.

1. f is positive-circular if and only if f is even-self-dual and non-expansive.

2. f is negative-circular if and only if f is odd-self-dual and non-expansive.

We will use the following lemma several times.

Lemma 3. Let f be networks on V and I ⊆ V . Let f ′ be the network on V
defined by f ′(x) = f(x)⊕ eI for all x ∈ BV . We have the following properties.

1. If f is non-expansive, then f ′ is non-expansive.

2. If f is self-dual, then f ′ is self-dual.

3. If f is even or odd, then f ′ is even or odd.

4. |Gf ′(x)| = |Gf(x)| for all x ∈ BV .

Proof. Suppose that f is non-expansive, and let x, y ∈ BV . Then

d(f ′(x), f ′(y)) = d(f(x)⊕ eI , f(y)⊕ eI) = d(f(x), f(y)) ≤ d(x, y).

thus f ′ is non-expansive.

If f is self-dual then

f ′(x⊕ 1) = f(x⊕ 1)⊕ eI = f(x)⊕ 1⊕ eI = f ′(x)⊕ 1

thus f ′ is self-dual.

Suppose that f is even. For all x ∈ BV , we have f̃ ′(x) = f ′(x) ⊕ x =
f(x) ⊕ eI ⊕ x = f̃(x) ⊕ eI , and since f̃(x) is even, we deduce that f̃ ′(x) and
|I| have the same parity. Thus all the points of f̃ ′(BV ) have the parity of |I|.
Suppose that |I| is even (resp. odd), and let z ∈ BV be an even (resp. odd).
Then z ⊕ eI is even, thus there exists x ∈ BV such that f̃(x) = z ⊕ eI , so
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f̃ ′(x) = f ′(x)⊕ x = f̃(x)⊕ eI = z. Thus every even (resp. odd) point of BV is
in f̃ ′(BV ). Thus f ′ is even if |I| is even, and f ′ is odd otherwise. The proof is
similar if f is odd.

For all i, j ∈ V and x ∈ BV ,

|f ′ij(x)| = f ′i(x)⊕ f ′i(x⊕ ej) = fi(x)⊕ eI ⊕ fi(x⊕ ej)⊕ eI

= fi(x)⊕ fi(x⊕ ej) = |fij(x)|

and the last point follows.

Proof of Theorem 9. (Direction ⇒) Let f be a circular with permutation σ and
constant s. For all x, y ∈ BV , we have

d(f(x), f(y)) = ||σx⊕ s⊕ σy ⊕ s|| = ||σx⊕ σy|| = ||x⊕ y|| = d(x, y).

thus f is non expansive. Also,

f(x⊕ 1) = σ(x⊕ 1)⊕ s = σx⊕ 1⊕ s = f(x)⊕ 1

thus f is self-dual. We now prove that f is even (resp. odd) if G(f) is positive
(resp. negative). We have f̃(x) = x⊕ σx⊕ s so the parity of f̃(x) is the parity
of ||x||+ ||σx||+ ||s||. Since ||x|| = ||σx||, we deduce that the parity of f̃(x) is the
parity of ||s||. So if G(f) is positive (resp. negative) then the image of f̃ only
contains even (resp. odd) points. It remains to prove that if G(f) is positive
(resp. negative) then each even (resp. odd) point is in the image of f̃ . Suppose
that G(f) is positive (resp. negative), and let z be an even (resp. odd) point of
BV . Let n = |V | and let i1, i2, . . . in be the vertices of G(f) given in the order,
so that σ(i1) = in and σ(ik+1) = ik for 1 ≤ k < n. Let x be the point of BV
whose components xik are recursively defined as follows, with k decreasing from
n to 1:

xin = zi1 , xik = zik+1
⊕ sik+1

⊕ xik+1
1 ≤ k < n.

Let us prove that f̃(x) = z. For every 1 < k ≤ n, we have

f̃ik(x) = fik(x)⊕ xik = xσ(ik) ⊕ sik ⊕ xik
= xik−1

⊕ sik ⊕ xik = (zik ⊕ sik ⊕ xik)⊕ sik ⊕ xik = zik .

It remains to prove that f̃i1(x) = zin . By the definition of x, we have

xi1 = (zi2 ⊕ si2)⊕ xi2
= (zi2 ⊕ si2)⊕ (zi3 ⊕ si3)⊕ xi3
...

= (zi2 ⊕ si2)⊕ (zi3 ⊕ si3)⊕ · · · ⊕ (zin ⊕ sin)⊕ zi1
= (zi2 ⊕ zi3 ⊕ · · · ⊕ zin ⊕ zi1)⊕ (si2 ⊕ si3 ⊕ · · · ⊕ sin).
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So ||z|| and ||xi1 ⊕ si2 ⊕ si3 ⊕ · · · ⊕ sin || have the same parity, and since ||z|| and
||s|| have the same parity, we deduce that xi1 = si1 . Thus

f̃i1(x) = fi1(x)⊕ xi1 = xin ⊕ si1 ⊕ xi1 = zi1 ⊕ si1 ⊕ si1 = zi1

and it follows that f̃(x) = z. So f is even (resp. odd).

(Direction ⇐) We first prove the following property:

(1) Suppose that f is odd-self-dual and non-expansive, and suppose that
f(x) = x ⊕ ei for some x ∈ BV and i ∈ V . Then the in-degree of i
in Gf(x) is at most one.

Let x1 = x, and for all k ∈ N, let xk+1 = f(xk). Let n = |V |, and for all
1 ≤ p ≤ n, let us say that a sequence i1, i2, . . . , ip is good if it is a sequence of p
distinct vertices in V such that

f(xk) = xk ⊕ eik 1 ≤ k ≤ p.

Let us prove the following property:

(∗) For all 1 ≤ p ≤ n, there exists a good sequence i1, i2, . . . , ip.

Since f(x) = x⊕ ei, this is true for p = 1. So suppose that 1 < p ≤ n and that
there exists a good sequence i1, i2, . . . , ip−1. Since xp = f(xp−1) = xp−1 ⊕ eip−1

we have d(xp, xp−1) = 1, and since f is non-expansive, we deduce that

d(f(xp), xp) = d(f(xp), f(xp−1)) ≤ d(xp, xp−1) = 1.

Since f is odd, f has no fixed point, thus d(f(xp), xp) = 1, i.e. there exists an
element of V , that we denote by ip, such that f(xp) = xp ⊕ eip . To complete
the induction step, it remains to prove that ip 6= i1, i2 . . . , ip−1. Suppose, for a

contradiction, that ip = ik with 1 ≤ k < p. Then f̃(xp) = f̃(xk) = eik . Since f

is self dual f̃(xp ⊕ 1) = eik . Thus xp, xk and xp ⊕ 1 are elements of f̃−1(eik).
Since f is odd-self-dual, f̃−1(eik) contains exactly two elements. Thus xp = xk

or xp ⊕ 1 = xk, and this is not possible since

xp = xp−1 ⊕ eip−1

= xp−2 ⊕ eip−2
⊕ eip−1

...

= xk ⊕ eik ⊕ eik+1
⊕ · · · ⊕ eip−2

⊕ eip−1
.

This prove the induction step and (∗) follows. So let i1, i2, . . . , in be a good
sequence. Since x = x1 and f(x) = x ⊕ ei, we have i = i1. To prove (1), we
will prove that if Gf(x) has an arc from ik to i, then k = n. So let 1 ≤ k ≤ n,
and suppose that Gf(x) contains an arc from ik to i. Since f is non-expansive,

f(x⊕ eik) = f(x)⊕ ei = x⊕ ei ⊕ ei = x = (x⊕ eik)⊕ eik
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Thus f̃(x⊕ eik) = f̃(xk) = eik . Since f is self-dual f̃(x⊕ eik ⊕ 1) = eik . Thus
x⊕eik , xk and x⊕eik⊕1 are elements of f̃−1(eik), and as previously, we deduce
that xk = x⊕ eik or xk = x⊕ eik ⊕ 1. Thus k > 1, and since

xk = x⊕ ei1 ⊕ ei2 ⊕ · · · ⊕ eik−1

we have xk 6= x⊕ eik . Thus xk = x⊕ eik ⊕ 1 so eik ⊕ 1 = ei1 ⊕ ei2 ⊕ · · · ⊕ eik−1
.

If k < n then (eik ⊕ 1)in = 1 and (ei1 ⊕ ei2 ⊕ · · · ⊕ eik−1
)in = 0, a contradiction.

Thus k = n and (1) is proved.

(2) Suppose that f even-self-dual and non-expansive and suppose that f(x) =
x for some x ∈ BV . Then Gf(x) is a disjoint union of cycles.

Let i ∈ V . If f(x⊕ ei) = x then f̃(x⊕ ei) = ei and this is not possible since f
is even. Since f is non-expansive, we deduce that there exists j ∈ V such that
f(x ⊕ ei) = f(x) ⊕ ej . Then j is the unique out-neighbor of i in Gf(x). Thus
we have prove the following:

(∗) Each vertex of Gf(x) has exactly one out-neighbor.

Let i ∈ V , and let h be the network on V defined by f ′(y) = f(y) ⊕ ei for all
y ∈ BV . Since f(x) = x, we have f ′(x) = x ⊕ ei, thus according to Lemma 3,
f ′ is odd-self-dual and non-expansive. So according to (1), i has at most one
in-neighbor in Gf ′(x), and by Lemma 3, i has at most one in-neighbor in Gf(x).
Thus each vertex of Gf(x) has at most one in-neighbor, and using (∗) we deduce
that each vertex of Gf(x) has exactly one in-neighbor. Consequently, Gf(x) is
a disjoint union of cycles. This proves (2).

(3) Suppose that f is even- or odd-self-dual and non-expansive. Then Gf(x)
is a disjoint union of cycles for all x ∈ BV .

Let x ∈ BV , and let f ′ be the network on V defined by f ′(y) = f(y)⊕ f̃(x) for
all y ∈ BV . Then f ′(x) = f(x) ⊕ f̃(x) = x ⊕ f̃(x) ⊕ f̃(x) = x and we deduce
from Lemma 3 that f ′ is even-self-dual and non-expansive. Thus, following (2),
Gf ′(x) is a disjoint union of cycles, and we deduce from Lemma 3 that Gf(x)
is a disjoint union of cycles. This proves (3).

(4) Suppose that f is even- or odd-self-dual and non-expansive. ThenGf(x) =
G(f) for all x ∈ BV .

Let x ∈ BV and i, k, l ∈ V . Suppose that

flk(x) = s 6= 0 and flk(x⊕ ei) 6= s.

Since flk(x) = flk(x ⊕ ek), we have k 6= i, and since, by (3), each vertex of
Gf(x) has a unique in-neighbor, we have fl(x) = fl(x ⊕ ei). Suppose that
xk = 0. Then

flk(x⊕ ei) = fl(x⊕ ei ⊕ ek)− fl(x⊕ ei) = fl(x⊕ ei ⊕ ek)− fl(x) 6= s

and flk(x) = fl(x⊕ ek)− fl(x) = s. Thus fl(x⊕ ei ⊕ ek) 6= fl(x⊕ ek), that is,
fli(x⊕ ek) 6= 0. Thus Gf(x⊕ ek) contains both an arc from k to l and from i to
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l. Since i 6= k, l has at least two in-neighbor in Gf(x⊕ ek), and this contradicts
(3). If xk = 1, we obtain a contradiction with similar arguments. Thus:

∀x ∈ BV , ∀i, k, l ∈ V, flk(x) 6= 0 ⇒ flk(x) = flk(x⊕ ei)

We deduce that Gf(x) is a subgraph of Gf(x ⊕ ei) and that Gf(x ⊕ ei) is a
subgraph of Gf((x⊕ ei)⊕ ei) = Gf(x). Thus G(x) = G(x⊕ ei) for all x ∈ BV
and i ∈ V , and as an immediate consequence, Gf(x) = Gf(y) for all x, y ∈ BV .
This proves (4).

(5) If f is even-self-dual and non-expansive, then G(f) is a positive cycle.

Indeed, following (3) and (4), G(f) is a disjoint union of cycles and since f if
even-self-dual, f has exactly 2 fixed points. Thus G(f) has only positive cycles
(otherwise f would have no fixed point, according to Theorem 2). And since if
G(f) is a union of p ≥ 1 disjoint positive cycle then f has 2p fixed points, we
deduce that G(f) is a positive cycle.

(6) If f is odd-self-dual and non-expansive, then G(f) is a negative cycle.

Let i ∈ V and let f ′ be the network on V defined by f ′(x) = f(x) ⊕ ei for all
x ∈ BV . By Lemma 3, f ′ is even-self-dual and non-expansive. Thus according
to (5), G(f ′) is a cycle. From Lemma 3, we deduce that G(f) is a cycle too.
Since f is odd, it has no fixed point, and we deduce that G(f) is a negative
cycle.

As an immediate consequence of this theorem and Corollary 2 we obtain the
following:

Corollary 6. If f is non-expansive, then every subnetwork of f has a unique
fixed point if and only if f has no circular subnetwork.

Remark 10. It is easy to check that critical even-self-dual (resp. odd-self-dual)
network with at most three components are circular. Below is an example of
critical even-self-dual network with four components which is not circular.

Example 5. The following network f on {1, 2, 3, 4} is a critical even-self-dual
network which is not circular (and which is expansive, since d(f(0), f(ei)) ≥ 2
for i = 1, 2, 3, 4). Note that the subnetwork f40 is the three-dimensional network
considered in Examples 1, 2 and 3.

f1(x) = (x2 ∧ x3 ∧ x4) ∨ ((x2 ∨ x3) ∧ x4)

f2(x) = (x3 ∧ x1 ∧ x4) ∨ ((x3 ∨ x1) ∧ x4)

f3(x) = (x1 ∧ x2 ∧ x4) ∨ ((x1 ∨ x2) ∧ x4)

f4(x) = (x2 ∧ x3 ∧ x1) ∨ ((x2 ∨ x3) ∧ x1)
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x f(x) f̃(x)
0000 0000 0000
0010 1000 1010
0100 0010 0110
0110 0011 0101
1000 0100 1100
1010 1001 0011
1100 0101 1001
1110 0001 1111
0001 1110 1111
0011 1010 1001
0101 0110 0011
0111 1011 1100
1001 1100 0101
1011 1101 0110
1101 0111 1010
1111 1111 0000

G(f)

1 2

34

9. Non-expansive networks

As we have seen in the preceding section, a positive-circular (resp. negative-
circular) network f is non-expansive, and it is easy to see that such a network is
also 2-critical (resp. 0-critical). The following theorem, the main result of this
section, asserts that the converse is true.

Theorem 10.

1. f is positive-circular if and only if f is 2-critical and non-expansive.

2. f is negative-circular if and only if f is 0-critical and non-expansive.

Even if the two points of this theorem seem similar (symmetrical), their proofs
are very different. The proof of the first is rather direct and uses Theorem 8
and a part of Theorem 9 (non-expensive even-self-dual networks are positive-
circular). The proof of the second points is independent of previous results. It
consists in visiting each point of BV in a very special order. In both cases, the
following lemma will be useful.

Lemma 4. Let f be networks on V and I ⊆ V . Let f ′ be the network on V
defined by f ′(x) = f(x ⊕ eI) ⊕ eI for all x ∈ BV . We have the following
properties.

1. If f is non-expansive, then f ′ is non-expansive.

2. If f is 2-critical, then f ′ is 2-critical.

3. If f is 0-critical, then f ′ is 0-critical.

4. |G(f ′)| = |G(f)|.
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Proof. Suppose that f is non-expansive, and let x, y ∈ BV . Then

d(f ′(x), f ′(y)) = d(f(x⊕ eI)⊕ eI , f(y ⊕ eI)⊕ eI)

= d(f(x⊕ eI), f(y ⊕ eI)) ≤ d(x⊕ eI , y ⊕ eI) = d(x, y).

thus f ′ is non-expansive.

Let J be a non-empty subset of V and let h be the subnetwork of f induced
by z ∈ BV \J . Let h′ be the network on J defined by h′(y) = h(y⊕ eI∩J)⊕ eI∩J
for all y ∈ BJ . Let x ∈ BV be such that x−J = z ⊕ eI\J . We have

h′(x|J) = g(x|J ⊕ eI∩J)⊕ eI∩J = h((x⊕ eI)|J)⊕ eI∩J

Since
(x⊕ eI)−J = x−J ⊕ eI\I = z ⊕ eI\J ⊕ eI\I = z

we have

h((x⊕ eI)|J)⊕ eI∩J = f(x⊕ eI)|J ⊕ eI∩J = (f(x⊕ eI)⊕ eI)|J = f ′(x)|J .

Thus h′(x|J) = f ′(x)|J for all x ∈ BV be such that x−J = z ⊕ eI\J , i.e. h′ is
the subnetwork of f ′ induced by z ⊕ eI\J . Since it is clear that h and h′ have
the same number of fixed points, 2. and 3. are proved.

For all i, j ∈ V and x ∈ BV ,

|f ′ij(x)| = f ′i(x)⊕ f ′i(x⊕ ej) = fi(x⊕ eI)⊕ eI ⊕ fi(x⊕ eI ⊕ ej)⊕ eI

= fi(x⊕ eI)⊕ fi(x⊕ eI ⊕ ej) = |fij(x⊕ eI)|

thus |Gf ′(x)| = |Gf(x⊕ eI)| and 4. follows.

Proof of Theorem 10. (Direction ⇒ of 1. and 2.) Suppose that f is positive-
circular (resp. negative-circular). According to Theorem 9, f is non-expansive,
and according to the same theorem, it is even-self-dual (resp. odd-self-dual),
thus it has two (resp. no) fixed points. If h is a strict subnetwork of f , then
G(h) is a strict subgraph of G(f), thus it is acyclic, and by Robert’s theorem,
h has a unique fixed point. Thus f is 2-critical (resp. 0-critical).

(Direction ⇐ of 1.) We first need the following property:

(1) Suppose that f is non-expansive. If f(0) = 0 and f(1) = 1 then ||x|| =
||f(x)|| for all x ∈ BV .

Indeed, under these hypothesis,

||f(x)|| = d(0, f(x)) = d(f(0), f(x)) ≤ d(0, x) = ||x||

and

|V | − ||f(x)|| = d(1, f(x)) = d(f(1), f(x)) ≤ d(1, x) = |V | − ||x||.

thus ||f(x)|| ≥ ||x|| and it follows that ||f(x)|| = ||x||.
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(2) Suppose that f is non-expansive. Suppose also that f(0) = 0 and f(1) =
1. Let I be a non-empty subset of V . Let z ∈ BV \I and let h be the
subnetwork of f induced by z. If h(1) = h(0)⊕ 1 then h(0) = 0.

Let z0 and z1 denotes the points of BV such that

z0|I = 0, z1|I = 1, z0−I = z1−I = z.

So h(0) = f(z0)|I and h(1) = f(z1)|I . Suppose that h(1) = h(0)⊕ 1. Then

d(f(z0), f(z1)) = d(f(z0)−I , f(z1)−I) + d(f(z0)|I , f(z1)|I)
= d(f(z0)−I , f(z1)−I) + d(h(0), h(1))

= d(f(z0)−I , f(z1)−I) + d(h(0), h(0)⊕ 1)

= d(f(z0)−I , f(z1)−I) + |I|.

Since f is non-expansive

d(f(z0), f(z1)) = d(f(z0)−I , f(z1)−I) + |I| ≤ d(z0, z1) = |I|

thus d(f(z0)−I , f(z1)−I) = 0, that is f(z0)−I = f(z1)−I = y for some y ∈ BV \I .
Since f(0) = 0 and f(1) = 1, it follows from (1) that

||z|| = ||z0|| = ||f(z0)|| = ||f(z0)|I ||+ ||f(z0)−I || = ||h(0)||+ ||y||

and

|I|+ ||z|| = ||z1|| = ||f(z1)|| = ||f(z1)|I ||+ ||f(z1)−I ||

= ||h(1)||+ ||y|| = ||h(0)⊕ 1||+ ||y|| = |I| − ||h(0)||+ ||y||.

Thus
2||z|| = ||z0||+ ||z1|| − |I| = 2||y||.

Hence ||z|| = ||y|| and since ||z|| = ||h(0)|| + ||y||, and it follows that ||h(0)|| = 0.
This prove (2).

We are now in position to prove that 2-critical non-expansive networks are
positive-circular. Suppose that f is 2-critical and non-expansive. Let x be a
fixed point of f . Let f ′ be the network on V defined by f ′(y) = f(y⊕x)⊕x for
all y ∈ BV . Then f ′(0) = f(x)⊕x = x⊕x = 0. Furthermore, by Lemma 4, f ′ is
2-critical (so f ′(1) = 1) and f ′ is non-expansive. Suppose that f ′ has a self-dual
strict subnetwork h. Then following (2), we have h(0) = 0 and thus h(1) = 1,
so f ′ is not 2-critical, a contradiction. We deduce that f ′ has no self-dual strict
subnetwork, and since it has two fixed points, we deduce from Theorem 8 that
f ′ is even-self-dual. Thus, according to Theorem 9, G(f ′) is a positive cycle. It
follows from Lemma 4 that G(f) is a cycle, and since f has two fixed points,
G(f) is a positive cycle.

(Direction ⇐ of point 2.) We begin with the following fact.
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(3) If f is non-expansive and 0-critical, then for all i ∈ V there exists x, y ∈ BV
with xi 6= yi such that f̃(x) = f̃(y) = ei.

Let i ∈ V and α ∈ B. Since f is 0-critical, the immediate subnetwork f iα

has at least one fixed point. Thus there exists x ∈ BV with xi = α such that
f(x)−i = f iα(x−i) = x−i. Hence, f(x) = x or f(x) = x ⊕ ei, and since f has
no fixed point, we deduce that f(x) = x⊕ ei. Thus f̃(x) = ei, and (3) follows.

(4) If f is non-expansive and 0-critical then for all i ∈ V and x, y ∈ BV :

f̃(x) = f̃(y) = ei and xi 6= yi ⇒ x = y ⊕ 1.

Suppose that f̃(x) = f̃(y) = ei and xi 6= yi. Suppose that there exists j such
that xj = yj = α. Then f jα(x−j) = x−j ⊕ ei and f jα(y−j) = y−j ⊕ ei. Since f
is 0-critical, f jα has a fixed point z. If xi = zi then

d(f jα(x−j), f
jα(z)) = d(x−j ⊕ ei, z) = d(x−j , z) + 1,

a contradiction with the fact that f jα is non-expansive. Otherwise yi = zi so

d(f jα(y−j), f
jα(z)) = d(y−j ⊕ ei, z) = d(y−j , z) + 1

and we obtain the same contradiction. Consequently, there is no j such that
xj = yj . So x = y ⊕ 1 and (4) is proved.

(5) Suppose that every 0-critical non-expansive network f such that f(0) = ei
for some i ∈ V is negative circular. Then every 0-critical non-expansive
network is negative circular.

Indeed, let f be 0-critical and non-expansive. By (3) there exists i ∈ V and
x ∈ BV such that f(x) = x ⊕ ei. Let f ′ be the network on V defined by
f ′(y) = f(y ⊕ x) ⊕ x for all y ∈ BV . By Lemma 4, f ′ is 0-critical and non-
expansive. Furthermore, f ′(0) = f(x)⊕x = x⊕ei⊕x = ei. Thus, by hypothesis,
G(f ′) is a negative cycle. It follows from Lemma 4 that G(f) is a cycle, and
since f has no fixed points, G(f) is a negative cycle. This proves (5).

So according to (5), we can assume, without loss of generality, the following
hypothesis:

(H) f(0) = ei for some i ∈ V .

Also, in the all following, we use the following notations:

n = |V |, x1 = 0 and xk+1 = f(xk) for all k ∈ N.

We first prove the following property (using arguments similar to the ones in-
troduced in claim (1) of the proof of Theorem 9).

(6) For all k ≥ 1, there exists ik ∈ V such that f(xk) = xk ⊕ eik , and the
resulting sequence i1i2i3 . . . is a periodic sequence of period n.
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We prove this by induction on k. The case k = 1 is given by the the hypoth-
esis (H), so suppose that k > 1. Then xp = f(xp−1) = xp−1 ⊕ eip−1 thus
d(xp, xp−1) = 1, and since f is non-expansive, we deduce that

d(f(xp), xp) = d(f(xp), f(xp−1)) ≤ d(xp, xp−1) = 1.

Since f has no fixed point d(f(xp), xp) = 1 so there exists ik ∈ V such that
f(xp) = xp⊕eip . We now prove that i1i2i3 . . . is a periodic sequence of period n.
Let k ≥ 1. Suppose that there exists l ≥ 1 such that ik = ik+l, and let l be
minimal for this property. Then f̃(xk) = f̃(xk+l) = eik . Since

xk+l = xk ⊕ eik ⊕ eik+1
⊕ · · · ⊕ eik+l−1

and since ik 6= ik+p for all 1 ≤ p < l we have xk+lik
6= xkik thus following (4),

xk+l = xk ⊕ 1. Consequently, l = n. Thus, the sequence i1i2i3 . . . has period n
and (6) is proved.

(7) As an immediate consequence of (6), we have

x1 = 0

x2 = ei1
x3 = ei1 ⊕ ei2

...

xk = ei1 ⊕ ei2 ⊕ ei3 ⊕ · · · ⊕ eik−1

...

xn+1 = ei1 ⊕ ei2 ⊕ ei3 ⊕ · · · ⊕ eik−1
⊕ · · · ⊕ ein = 1

and

xn+1 = 1

xn+2 = 1⊕ ei1
xn+3 = 1⊕ ei1 ⊕ ei2

...

xn+k = 1⊕ ei1 ⊕ ei2 ⊕ ei3 ⊕ · · · ⊕ eik−1

...

x2n+1 = 1⊕ ei1 ⊕ ei2 ⊕ ei3 ⊕ · · · ⊕ eik−1
⊕ · · · ⊕ ein = 0.

Let h be the negative-circular network on V such that G(h) is the negative
cycle with a negative arc from in to in+1 = i1 and a positive arc from ik to ik+1

for all 1 ≤ k < n. In this way, for all x ∈ BV ,

hi1(x) = xin ⊕ 1, hik(x) = xik−1
1 < k ≤ n.

We will prove that h = f , using several times the following easy tow next
properties.
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(8) For all x ∈ BV and 1 ≤ k < l ≤ n,

f(x⊕ eik) = h(x⊕ eik)

f(x⊕ eil) = h(x⊕ eil)

}
⇒

f(x) = h(x) or

f(x) = h(x)⊕ eik+1
⊕ eil+1

.

Since f is non expansive,

d(f(x), f(x⊕ eik)) = d(f(x), h(x⊕ eik)) ≤ 1

d(f(x), f(x⊕ eil)) = d(f(x), h(x⊕ eil)) ≤ 1

Also h(x⊕eik) = h(x)⊕eik+1
and h(x⊕eil) = h(x)⊕eil+1

. From k 6= l it comes
that d(h(x⊕ eik), h(x⊕ eil)) = 2 and thus

d(f(x), h(x)⊕ eik+1
) = 1

d(f(x), h(x)⊕ eik+l
) = 1

Hence, there exists p, q such that

f(x) = h(x)⊕ eik+1
⊕ eip

f(x) = h(x)⊕ eil+1
⊕ eiq

Thus if f(x) 6= h(x) then ip = il+1 and iq = ik+1. This proves (8).

(9) For all x ∈ BV and 1 ≤ k < l < p ≤ n,

f(x⊕ eik) = h(x⊕ eik)

f(x⊕ eil) = h(x⊕ eil)
f(x⊕ eip) = h(x⊕ eip)

 ⇒ f(x) = h(x).

Indeed, if f(x) 6= h(x), then according to (8),

f(x) = h(x)⊕ eik+1
⊕ eil+1

f(x) = h(x)⊕ eik+1
⊕ eip+1

thus il+1 = ip+1, a contradiction. This proves (9).

(10) If x ∈ BV and xi1 > xin then f(x) = h(x).

Let x ∈ BV be such that xi1 = 1 and xin = 0. Consider the sequence s(x) =
xi1xi2 . . . xin , and decompose this sequence into maximal subsequences with
only 1 or only 0, in the following way:

s(x) = 11 · · · 11︸ ︷︷ ︸
s(x)1

00 · · · 00︸ ︷︷ ︸
s(x)2

11 · · · 11︸ ︷︷ ︸
s(x)3

00 · · · 00︸ ︷︷ ︸
s(x)4

11 · · · // · · · 11 00 · · · 00︸ ︷︷ ︸
s(x)t(x)

.

Clearly, t(x) is even and t(x) ≥ 2 (since xi1 > xin). For each 1 ≤ p ≤ t(x), let
|s(x)p| denote the length of s(x)p.
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(a) Suppose that t(x) = 2. Then s(x) has the following form:

s(x) = xi1xi2 . . . xin = 11 · · · 11︸ ︷︷ ︸
s(x)1

00 · · · 00︸ ︷︷ ︸
s(x)2

.

Let k be such that xik is the first element of s(x)2 (or equivalently, the
first zero of s(x)). Then x = ei1 ⊕ ei2 ⊕ · · · ⊕ eik−1

, so h(x) = x ⊕ eik .
Following (7) we have x = xk and f(xk) = xk ⊕ eik thus f(x) = h(x).

(b) Suppose that t(x) = 4. Then s(x) has the following form:

s(x) = xi1xi2 . . . xin = 11 · · · 11︸ ︷︷ ︸
s(x)1

00 · · · 00︸ ︷︷ ︸
s(x)2

11 · · · 11︸ ︷︷ ︸
s(x)3

00 · · · 00︸ ︷︷ ︸
s(x)4

.

We show that f(x) = h(x) by induction on |s(x)2| and then on |s(x)3|.
Let xik be the first element of s(x)2, let xil be the first element of s(x)3,
and let xip be the last element of s(x)3, so that:

s(x)2 = xikxik+1
· · ·xil−1

s(x)3 = xilxil+1
· · ·xip .

• Suppose that |s(x)2| = 1. Assume first that |s(x)3| = 1. In this
situation, s(x)2 = xik , s(x)3 = xik+1

and

x = ei1 ⊕ ei2 ⊕ · · · ⊕ eik−1
⊕ eik+1

so that
h(x) = x⊕ eik ⊕ eik+1

⊕ eik+2
.

Also t(x⊕ eik) = 2 and t(x⊕ eik+1
) = 2, and from (a) it follows that

f(x⊕eik) = h(x⊕eik) and f(x⊕eik+1
) = h(x⊕eik+1

). Consequently,
according to (8), we have f(x) = h(x) or f(x) = h(x)⊕eik+1

⊕eik+2
.

In the second case,

f(x) = h(x)⊕ eik+1
⊕ eik+2

= x⊕ eik ⊕ eik+1
⊕ eik+2

⊕ eik+1
⊕ eik+2

= x⊕ eik .

Thus f̃(x) = eik . Following (7), f̃(xn+k) = eik and we deduce from
(4) that xn+k = x⊕ 1, which is a contradiction since by, (7),

xn+k = 1⊕ ei1 ⊕ ei2 ⊕ ei3 ⊕ · · · ⊕ eik−1
= 1⊕ x⊕ eik+1

.

Consequently, f(x) = h(x). This proves the base case of (b1). For
the induction step, assume that |s(x)3| > 1. Then s(x)2 = xik ,
s(x)3 = xik+1

· · ·xip and

x = ei1 ⊕ ei2 ⊕ · · · ⊕ eik−1
⊕ eik+1

⊕ eik+2
⊕ · · · ⊕ eip

so that
h(x) = x⊕ eik ⊕ eik+1

⊕ eip+1 .
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Also t(x⊕ eik) = 2 and we deduce from (a) that f(x⊕ eik) = h(x⊕
eik). In addition, t(x⊕ eip) = 4 and

|s(x⊕ eip)2| = 1 < |s(x⊕ eip)3| = |s(x)3| − 1.

Thus, by induction hypothesis, f(x ⊕ eip) = h(x ⊕ eip). Hence,
according to (8) we have f(x) = h(x) or f(x) = h(x)⊕ eik+1

⊕ eip+1
.

In the second case,

f(x) = h(x)⊕ eik+1
⊕ eip+2

= x⊕ eik ⊕ eik+1
⊕ eip+1

⊕ eik+1
⊕ eip+1

= x⊕ eik .

Thus f̃(x) = eik . Following (7), f̃(xn+k) = eik and we deduce from
(4) that xn+k = x⊕ 1, which is a contradiction since, by (7),

xn+k = 1⊕ ei1 ⊕ ei2 ⊕ ei3 ⊕ · · · ⊕ eik−1

= 1⊕ x⊕ eik+1
⊕ eik+2

⊕ · · · ⊕ eip .

Consequently, f(x) = h(x).
• Suppose that |s(x)2| > 1. Then t(x ⊕ eik) = t(x ⊕ eil−1

) = 4, and
|s(x⊕eik)2| = |s(x⊕eil−1

)2| < |s(x)2|. Thus, by induction hypothesis,

f(x⊕ eik) = h(x⊕ eik)

f(x⊕ eil−1
) = h(x⊕ eil−1

)

Suppose that |s(x)3| = 1 so that s(x)3 = xil . Then t(x ⊕ eil) = 2
and we deduce from (a) that f(x ⊕ eil) = h(x ⊕ eil) and from (9)
it comes that f(x) = h(x). Now, suppose that |s(x)3| > 1. Then
t(x⊕ eip) = 4, |s(x⊕ eip)2| = |s(x)2| and |s(x⊕ eip)3| = |s(x)3| − 1,
thus, by induction hypothesis,

f(x⊕ eip) = h(x⊕ eip)

and according to (9), f(x) = h(x).

(c) Suppose that t(x) ≥ 4. We prove that f(x) = h(x) by induction on t(x)
and then on |s(x)2|+ |s(x)4|. The base case t(x) = 4 is given by (b). So
assume that t(x) ≥ 6. We use the following notations:

s(x)2 = xikxik+1
· · ·xiq

s(x)4 = xilxil+1
· · ·xip

s(x)t(x)−1 = xirxir+1 · · ·xis

• Suppose that |s(x)2| + |s(x)4| = 2. Then t(x ⊕ eik) = t(x ⊕ eil) =
t(x)− 2. Thus, by induction hypothesis.

f(x⊕ eik) = h(x⊕ eik)

f(x⊕ eil) = h(x⊕ eil)
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We prove that f(x) = h(x) by induction on |s(x)t(x)−1|. If |s(x)t(x)−1| =
1 then t(x⊕ eir ) = t(x)− 2 and by induction hypothesis,

f(x⊕ eir ) = h(x⊕ eir ).

Thus according to (9), f(x) = h(x). If |s(x)t(x)−1| > 1 then t(x ⊕
eis) = t(x), |s(x ⊕ eis)2| + |s(x ⊕ eis)4| = 2 and |s(x ⊕ eis)t(x)−1| <
|s(x)t(x)−1|, thus, by induction hypothesis,

f(x⊕ eis) = h(x⊕ eis)

and according to (9), f(x) = h(x).
• Suppose that |s(x)2| + |s(x)4| > 2. Then either |s(x)2| ≥ 2 or
|s(x)4| ≥ 2. Suppose that |s(x)2| ≥ 2, the other case being similar.
Then t(x⊕ eik) = t(x⊕ eiq ) = t(x) and |s(x⊕ eik)2| = |s(x⊕ eiq )2| <
|s(x)2| and |s(x⊕eik)4| = |s(x⊕eiq )4| = |s(x)4|, and so, by induction
hypothesis,

f(x⊕ eik) = h(x⊕ eik)

f(x⊕ eiq ) = h(x⊕ eiq ).

If |s(x)4| = 1 then t(x⊕eil) = t(x)−2 thus, by induction hypothesis,
f(x⊕eil) = h(x⊕eil); otherwise, t(x⊕eil) = t(x) and |s(x⊕eil)2| =
|s(x)2| and |s(x ⊕ eil)4| < |s(x)4|, and so, by induction hypothesis,
we have again

f(x⊕ eil) = h(x⊕ eil).

Thus, according to (9), f(x) = h(x). This ends the proof of (10).

With similar arguments, we get:

(11) If x ∈ BV and xi1 < xin then f(x) = h(x).

Hence, to complete the proof, it remains to prove that if xi1 = xin then
f(x) = h(x). Assume that xi1 = xin = 0. We proceed by induction on ||x||. If
||x|| = 0 then f(x) = h(x) according to (7). Otherwise, there exists 1 < k < n
such that xik = 1. Since ||x⊕ eik || = ||x|| − 1, by induction hypothesis,

f(x⊕ eik) = h(x⊕ eik).

Now since (x ⊕ ei1)i1 > (x ⊕ ei1)in and (x ⊕ ein)i1 < (x ⊕ ein)in , according to
(10) and (11) we have

f(x⊕ ei1) = h(x⊕ ei1)

f(x⊕ ein) = h(x⊕ ein)

and we deduce from (9) that f(x) = h(x). If xi1 = xin = 1, we prove with
similar arguments that f(x) = h(x). Thus f = h.
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As a consequence of this theorem and the fact that a network with multi-
ple fixed points (resp. without fixed point) has a 2-critical (resp. 0-critical)
subnetwork, we obtain the following “dichotomization” of Corollary 6.

Corollary 7. Suppose that f is non-expansive.

1. Each subnetwork of f has at most one fixed point if and only if f has no
positive-circular subnetwork.

2. Each subnetwork of f has at least one fixed point if and only if f has no
negative-circular subnetwork.

It is easy to see that, if the maximal in-degree of the global interaction graph
G(f) of a network f is at most one, then Gf(x) = G(f) for all x ∈ BV . Thus,
in particular, if f is circular then Gf(x) = G(f) for all x ∈ BV . Proceeding as
in Section 5 with this property instead of Proposition 4, we obtain the following
corollary. Note that the second point generalizes Theorem 7.

Corollary 8. Suppose that f is non-expansive.

1. If, for every 1 ≤ k ≤ |V |, there exists at most 2k − 1 points x such that
Gf(x) has a chordless positive cycle of length k, then f has at most one
fixed points.

2. If, for every 1 ≤ k ≤ |V |, there exists at most 2k − 1 points x such that
Gf(x) has a chordless negative cycle of length k, then f has at least one
fixed points.

10. Conjonctive networks

A network f on V is an and-net (or conjunctive network) if G(f) is
simple and if, for every i ∈ V , fi is the conjunction of the positive and negative
inputs of i in G(f), that is: For all x ∈ BV , fi(x) = 1 if and only if G(f) has
no positive arc j → i with xj = 0 and no negative arc j → i with xj = 1. Note
that every subnetwork of an and-net is an and-net. Note also that for the class
of and-nets, f and G(f) share the same informations.

In this section, we first prove that every 2-critical and-net is positive circular
(but we were not able to prove that every 0-critical and-net is negative circular).
Then, we show that, for and-nets, the presence of even-self-dual (resp. odd-
self-dual) subnetworks can be checked in a very simple way by looking at the
chordless positive (resp. negative) cycles of G(f).

Proposition 7.

1. f if positive-circular if and only if f is an even-self-dual and-net.

2. f if negative-circular if and only if f is an odd-self-dual and-net.

Proof. Suppose that f is positive-circular (negative-circular). Then, by Theo-
rem 9, f is even-self-dual (resp. odd-self-dual), and since each vertex i ∈ V has
exactly one in-neighbor in G(f), f is an and-net.
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Suppose that f is an even- or odd-self-dual and-net. Let i, j, k ∈ V , and
assume that j and k are distinct in-neighbor of i in G(f). Let x ∈ BV be such
that fi(x) = 1. Then fi(y) = 0 for every y such that yj 6= xj or yk 6= xk. So
fi(x ⊕ ej) = fi(x ⊕ ej ⊕ 1) = 0, so f is not self-dual, a contradiction. Since fi
is not a constant, we deduce each vertex of G(f) is of in-degree one. According
to Proposition 4, each vertex of G(f) is of out-degree at least one. Since the
sum of the in-degrees equals the sum of the out-degrees, we deduce that each
vertex of G(f) is of in-degree one and out-degree one 3. In other words, G(f)
is a disjoint union of cycles. Let C be a cycle of G(f) with vertex set I. Then,
for all x ∈ BV ,

fi(x⊕ eI) = fi(x)⊕ 1 ∀i ∈ I,

and since G(f) has no arc from I to V \ I, we deduce that

fi(x⊕ eI) = fi(x) ∀i ∈ V \ I,

So f(x⊕ eI) = f(x)⊕ eI , and thus:

f̃(x⊕ eI) = (x⊕ eI)⊕ (f(x)⊕ eI) = x⊕ f(x) = f̃(x).

and since f is even- or odd-self-dual, we deduce that x⊕eI = x⊕1, that is I = V .
So G(f) is a cycle, which is positive if f is even, and negative otherwise.

Using this proposition and Corollary 2 we obtain the following characteriza-
tion.

Corollary 9. If f is an and-net, then each subnetwork of f has a unique fixed
point if and only if f has no circular subnetworks.

We will now show that the “unicity part” of this characterization can be
obtained under the absence of positive-circular subnetwork.

Theorem 11. f is positive-circular if and only if f is a 2-critical and-net.

Proof. If P is a sequence of signed arcs of G(f), we set s(P ) = 0 if P has an
even number of negative arcs, and s(P ) = 1 if P has an odd number of negative
arcs. We first prove the following two properties (which may be of independent
interest).

(1) Suppose that f is an and-net. Suppose also that there exists x ∈ BV such
that f(x) = x and f(x⊕ 1) = x⊕ 1. Let

P = (i1, s1, i2), (i2, s2, i3), . . . , (il−1, sl−1, il), (il, sl, il+1)

be a sequence of arcs of G(f). Then s(P ) = xi1 ⊕ xil+1
.

3If each vertex of G(f) is of out-degree one, then f is non-expansive, and we can conclude
by applying Theorem 9. However, we give here the few additional arguments that makes the
proof independent of Theorem 9.
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We proceed by induction of the length l of the sequence.

1. Suppose that l = 1, that is P = (i1, s1, i2). If s1 = 1, then the arc
from i1 to i2 is positive and: If xi1 = 0 then fi2(x) = 0 = xi2 ; and if
xi1 = 1, then fi2(x⊕ 1) = 0 = xi2 ⊕ 1 thus xi2 = 1. Hence, in both cases,
xi1⊕xi2 = 0 = s(P ). If s1 = −1, then the arc from i1 to i2 is negative so: If
xi1 = 1 then fi2(x) = 0 = xi2 ; and if xi1 = 0, then fi2(x⊕1) = 0 = xi2⊕1
thus xi2 = 1. Hence, in both cases, xi1 ⊕ xi2 = 1 = s(P ). This prove the
base case.

2. Suppose that l > 1. Then P can be expressed as the concatenation P =
QQ′ of two subsequences Q and Q′, both of length at most l − 1. If q is
the length of Q, then, by induction hypothesis, s(Q) = xi1 ⊕ xiq+1

and
s(Q′) = xiq+1⊕xil+1

thus s(P ) = s(Q)⊕s(Q′) = xi1⊕xiq+1⊕xiq+1⊕xil+1
=

xi1 ⊕ xil+1
. This proves (1).

(2) Suppose that f is an and-net. If there exists x ∈ BV such that f(x) = x
and f(x⊕ 1) = x⊕ 1 then G(f) has no negative cycle.

If C is a cycle of G(f) go length l, and if P = (i1, s1, i2), (i2, s2, i3), . . . , (il, sl, i1)
are the arcs of C given in the order, then following (1), s(P ) = xi1 ⊕ xi1 = 0,
thus C has an even number of negative arcs, i.e. C is positive. This proves (2).

We are now in position to prove the theorem. By Theorem 10, every positive-
circular network is 2-critical, and it is obvious that positive-circular networks
are and-nets. So assume that f is a 2-critical and-net. By theorem 8 and
Proposition 7, f has a positive- or negative-circular subnetwork h. Following
(2), h cannot be negative-circular. Thus h is positive-circular. Thus h has two
fixed points, and since f is 2-critical, h = f .

As a consequence of this theorem and the fact that a network with multiple
fixed points has a 2-critical subnetwork, we obtain the following characterization.

Corollary 10. If f is an and-net, then each subnetwork of f has at most one
fixed point if and only if f has no positive-circular subnetworks.

Using again the fact that if f is circular then Gf(x) = G(f) for all x ∈ BV ,
we obtain:

Corollary 11. Suppose that f is an and-net. If, for every 1 ≤ k ≤ |V | there
exists at most 2k − 1 points x such that Gf(x) has a chordless positive cycle of
length k, then f has at most one fixed points.

Remark 11. In view of Theorems 10 and 11, it is tempting to think that every
0-critical and-net is negative-circular. But this is false, as showed below. For
all n ≥ 4, let Gn be the digraph with vertex set V = {0, 1, . . . , n − 1} and such
that for all u ∈ V and k ∈ {1,±2,±3, . . . ,±b 12nc} there is an arc from u to
u+ k (mod n). In [5], it is proved that Gn is kernel-critical: Gn has no kernel
and every strict induced subdigraph has a kernel. Using the correspondence
between kernels in digraphs and fixed points in and-nets established in [15], we
easily deduce that: For all n ≥ 4, the and-net f such that |G(f)| = Gn and such
that G(f) has only negative arc is a non-circular 0-critical and-net.
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Now, we show how to check if an and-net has or not a circular subnetworks
by looking at the chordless cycles of G(f). For that, additional definitions are
needed. Let G be a simple interaction graph with vertex set V , and let C be
a cycle in it. A vertex v ∈ V is a delocalizing vertex of C if G has both a
positive and a negative arcs from v to distinct vertices of C (v can be a vertex
of C; in such a case the cycle has two chords of opposite sign starting from v).

Proposition 8 (Richard and Ruet [15]). Suppose that f is an and-net. There
exists x ∈ BV such that Gf(x) has a cycle C if and only C is a cycle of G(f)
that has no delocalizing vertex in G(f).

Proposition 9 (Remy and Ruet [10]). Let f be a network on V . Let x ∈ BV ,
and suppose that Gf(x) has a cycle C with vertex set I. If C has no chord
in G(f), then the subnetwork of f induced by x−I is a circular network with
interaction graph C.

Proposition 10. Suppose that f is an and-net. Then f has a circular subnet-
work with interaction graph C if and only if C is a cycle of G(f) that has no
chord and no delocalizing vertex in G(f).

Proof. If C a cycle of G(f) without chord and delocalizing vertex in G(f),
then the fact that f has a subnetwork with interaction graph C follows from
Proposition 8 and Proposition 9.

Suppose that h is a circular subnetwork of f with interaction graph C. Let
I be the vertex set of C, x ∈ BV , and suppose that h is induced by x−I . Since
Gh(x−I) = G(h) = C is a subgraph of Gf(x), we deduce from Proposition 8
that C has no delocalizing vertex in G(f). Suppose, for a contradiction, that
C has a chord in G(f), say from j to i. Let k 6= j be the vertex preceding i
in C. Let y ∈ BV be such that y−I = x−I and yj = 0 if and only if the chord
j → i is positive. Then hi(y−I) = fi(y) = 0 and hi(y−I ⊕ ek) = fi(y ⊕ ek) = 0,
thus Gh(y−I) has no arc from k to i, a contradiction with the fact that h is
circular.

We are now in position to express conditions in Corollaries 9 and 10 in terms
of chordless cycles and delocalizing vertices.

Corollary 12. Let f be an and-net.

1. Each subnetwork of f has a unique fixed point if and only if f every chord-
less cycle of G(f) has a delocalizing vertex.

2. Each subnetwork of f has at most one fixed point if and only if f every
chordless positive cycle of G(f) has a delocalizing vertex.

Remark 12. If G(f) has n vertices and c cycles, then the enumeration of these
m cycles can be done with time complexity O(n2c); see [6] for instance. Since
for each cycle the absence chord and delocalizing vertex can be verified in O(n2),
conditions of Corollary 12 can be verified in time O(n2c).
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Example 6. [Continuation of Example 1] Take again the network f on {1, 2, 3}
defined by:

f1(x) = x2 ∧ x3
f2(x) = x3 ∧ x1
f3(x) = x1 ∧ x2.

This network is an and-net and its global interaction graph G(f) is

1

23

It is easy to see that every chordless cycle (i.e. cycle of length 2) has a delocaliz-
ing vertex. Thus f has no circular subnetwork (cf. Proposition 10). Thus it has
no even- or odd-self-dual subnetwork (cf. Proposition 7). Thus each subnetwork
of f has a unique fixed point (cf. Corollary 2); see indeed Example 1. Note that
the two cycles of length three have no delocalizing vertex, thus these cycles are
in Gf(x) for some x; see indeed Example 2.
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Appendix A. Proofs of Theorems 1, 3 and 5

Proof of Theorem 1. We proceed by induction on |V |. If |V | = 1 the theorem
is obvious. So assume that |V | > 1, and suppose that G(f) has no cycle. Then
G(f) has at least one vertex, say i, without in-neighbor. Hence, fi = cst = α ∈
B. Since G(f iα) is a subgraph of G(f), G(f iα) has no cycle and by induction
hypothesis f iα has a unique fixed point i.e. there exists a unique x ∈ BV
with xi = α such that f iα(x−i) = x−i. Since f(x)−i = f iα(x−i) = x−i and
fi(x) = α = xi, we deduce that f(x) = x. Suppose that f has a fixed point
y 6= x. Then fi(y) = α = yi so y−i 6= x−i and f iα(y−i) = f(y)−i = y−i. Thus
f iα has a fixed point distinct from x−i, a contradiction. Thus x is the unique
fixed point of f .

Proof of Theorem 3. We proceed by induction on the number of strongly con-
nected components. If |V | = 1 then the theorem is obvious. So assume that
|V | > 1. If G(f) is strongly connected, then the theorem is given by Theorem 2.
So suppose that G(f) is not strongly connected, an let I ⊆ V be an initial
strongly connected component of G(f) (there is no arc from V \ I to I). Let h
be the subnetwork of f induced by 0 ∈ BV \U . Let us prove that

∀x ∈ BV , h(x|I) = f(x)|I . (∗)
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Suppose, for a contradiction, that h(x|I) 6= f(x)|I for some x ∈ BV , and assume
that ||x|| is minimal for this property. Then, since h is induced by the point
0 ∈ BV \I , there exists j ∈ V \ I with xj = 1. Thus ||x ⊕ ej || < ||x|| so h(x|I) =
h((x⊕ej)|I) = f(x⊕ej)|I 6= f(x)|I . Thus there exists i ∈ I such that fi(x⊕ej) 6=
fi(x). Thus G(f) has an arc from j to i, a contradiction. This prove (∗). We
are now in position to complet the induction step.

1. Suppose that G(f) has no positive cycle, and suppose, for a contradiction,
that x and y are fixed points of f . Then following (∗), x|I and y|I are fixed
points of h. Since G(h) has no positive cycle, by induction hypothesis, h
has at most one fixed point, thus x|I = y|I = z. Let h′ be the subnetwork
of f induced by z. By definition, h′(x−I) = f(x)−I and h′(y−I) = f(y)−I .
Thus x−I and y−I are fixed points of h′. Since G(h′) has no positive cycle,
by induction hypothesis, h′ has at most one fixed point, thus x−I = y−I .
Thus x = y so f has at most one fixed point.

2. Suppose that G(f) has no negative cycle. Then G(h) has no negative
cycle, and by induction hypothesis, h has at least one fixed point z ∈
BI . Let h′ be the subnetwork of f induced by z. Again, by induction
hypothesis, h′ has at least one fixed point. Thus, there exists x ∈ BV
with x|I = z such that x−I = h′(x−I) = f(x)−I , and by (∗) we have
x|I = z = h(z) = h(x|I) = f(x)|I . Thus x is a fixed point of f .

Proof of Theorem 5. The “trick” consists in proving, by induction on |V |, the
following more general statement:

(∗) If Gf(x) has no cycle for all x ∈ BV , then the conjugate of f is a bijection
(and so f has a unique fixed point).

The case |V | = 1 is obvious. So suppose that |V | > 1, and suppose that Gf(x)
has no cycle for all x ∈ BV . Let i ∈ V and α ∈ B. For all x ∈ BV , Gf iα(x−i)
is a subgraph of Gf(x), and thus Gf iα(x−i) has no cycle. Using the induction
hypothesis, we deduce that: For all i ∈ V and α ∈ B, the conjugate of f iα is a
bijection. Now, suppose that f̃ is not a bijection. Then, there exists two distinct
points x and y in BV such that f̃(x) = f̃(y). Let us proved that x = y ⊕ 1.
Indeed, if xi = yi = α for some i ∈ V , then f̃ iα(x−i) = f̃(x)−i = f̃(y)−i =
f̃ iα(y−i). Thus the conjugate of f iα is not a bijection, a contradiction. So
x = y ⊕ 1. Since Gf(x) has no cycle, it contains at least one vertex of out-
degree 0. In other words, there exists i ∈ V such that f(xi1) = f(xi0). Thus
f̃(xi1)−i = f̃(xi0)−i = f̃(x)−i. Hence, setting α = yi, we obtain

f̃ iα(x−i) = f̃(xiα)−i = f̃(x)−i = f̃(y)−i = f̃(yiα)−i = f̃ iα(y−i).

So the conjugate of f iα is not a bijection, a contradiction. Thus f̃ is a bijection
and (∗) is proved.
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