Maximum likelihood estimation for a bivariate Gaussian process under fixed domain asymptotics - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Maximum likelihood estimation for a bivariate Gaussian process under fixed domain asymptotics

Résumé

We consider maximum likelihood estimation with data from a bivariate Gaussian process with a separable exponential covariance model under fixed domain asymptotic. We first characterize the equivalence of Gaussian measures under this model. Then consistency and asymptotic distribution for the microergodic parameters are established. A simulation study is presented in order to compare the finite sample behavior of the maximum likelihood estimator with the given asymptotic distribution.
Fichier principal
Vignette du fichier
elsarticleclasymfn.pdf (289.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01294547 , version 1 (29-03-2016)

Identifiants

Citer

Velandia Daira, François Bachoc, Bevilacqua Moreno, Gendre Xavier, Jean-Michel Loubes. Maximum likelihood estimation for a bivariate Gaussian process under fixed domain asymptotics. 2016. ⟨hal-01294547⟩
230 Consultations
414 Téléchargements

Altmetric

Partager

More