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under fixed domain asymptotics
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Abstract

We consider maximum likelihood estimation with data from a bivariate Gaussian process
with a separable exponential covariance model under fixed domain asymptotic. We first
characterize the equivalence of Gaussian measures under this model. Then consistency
and asymptotic distribution for the microergodic parameters are established. A simulation
study is presented in order to compare the finite sample behavior of the maximum likelihood
estimator with the given asymptotic distribution.

Keywords:
Bivariate exponential model; equivalent Gaussian measures; infill asymptotics;
microergodic parameters.

1. Introduction

Gaussian processes are widely used in statistics to model spatial data. When fitting a
Gaussian field, one has to deal with the issue of the estimation of its covariance. In many
cases, a model is chosen for the covariance, which turns the problem into a parametric
estimation problem. Within this framework, the maximum likelihood estimator (MLE) of
the covariance parameters of a Gaussian stochastic process observed in R¢, d > 1, has been
deeply studied in the last years in the two following asymptotic frameworks.

The fixed domain asymptotic framework, sometimes called infill asymptotics [1, 2|,
corresponds to the case where more and more data are observed in some fixed bounded
sampling domain (usually a region of R%). The increasing domain asymptotic framework
corresponds to the case where the sampling domain increases with the number of observed
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data and the distance between any two sampling locations is bounded away from 0. The
asymptotic behavior of the MLE of the covariance parameters can be quite different in
these two frameworks [3].

Consider first increasing-domain asymptotics. Then, generally speaking, for all (iden-
tifiable) covariance parameters, the MLE is consistent and asymptotically normal under
some mild regularity conditions. The asymptotic covariance matrix is equal to the inverse
of the (asymptotic) Fisher information matrix. This result was first shown by [4], and then
extended in different directions by [5, 6, 7, 8].

The situation is significantly different under fixed domain asymptotics. Indeed, two
types of covariance parameters can be distinguished: microergodic and non-microergodic
parameters [9, 1]. A covariance parameter is microergodic if, for two different values of it,
the two corresponding Gaussian measures are orthogonal, see [9, 1]|. It is non-microergodic
if, even for two different values of it, the two corresponding Gaussian measures are equiv-
alent. Non-microergodic parameters can not be estimated consistently, but misspecifying
them asymptotically results in the same statistical inference as specifying them correctly
[10, 11, 12, 3]. On the other hand, it is at least possible to consistently estimate microer-
godic covariance parameters, and misspecifying them can have a strong negative impact
on inference.

Nevertheless, under fixed domain asymptotics, it has often proven to be challenging to
establish the microergodicity or non-microergodicity of covariance parameters, and to pro-
vide asymptotic results for estimators of microergodic parameters. Most available results
are specific to particular covariance models. When d = 1 and the covariance model is expo-
nential, only a reparameterized quantity obtained from the variance and scale parameters
is microergodic. It is shown in [13] that the MLE of this microergodic parameter is consis-
tent and asymptotically normal. When d > 1 and for a separable exponential covariance
function, all the covariance parameters are microergodic, and the asymptotic normality
of the MLE is proved in [14]. Other results in this case are also given in [15, 16, 17].
Consistency of the MLE is shown as well in [18] for the scale covariance parameters of
the Gaussian covariance function and in [19] for all the covariance parameters of the sep-
arable Matérn 3/2 covariance function. Finally, for the entire isotropic Matérn class of
covariance functions, all parameters are microergodic for d > 4 [20], and only reparameter-
ized parameters obtained from the scale and variance are microergodic for d < 3 [21]. In
[22], the asymptotic distribution of MLEs for these microergodic parameters is provided,
generalizing previous results in [23] and [24].

All the results discussed above have been obtained when considering a univariate
stochastic process. There are few results on maximum likelihood in the multivariate set-
ting. Under increasing-domain asymptotics [25] extend the results of [4] to the bivariate
case and consider the asymptotic distribution of the MLE for a large class of bivariate
covariance models in order to test the independence between two Gaussian processes. In
[26], asymptotic consistency of the tapered MLE for multivariate processes is established,
also under increasing domain asymptotics. In [27], some results are given on the distribu-
tion of the MLE of the correlation parameter between the two components of a bivariate



stochastic process with a separable structure, when the space covariance is known, regard-
less of the asymptotic framework. In 28], the fixed domain asymptotic results of [14] are
extended to the multivariate case, for d = 3 and when the correlation parameters between
the different Gaussian processes are known. Finally, under fixed domain asymptotics, in the
bivariate case and when considering an isotropic Matérn model, [29] show which covariance
parameters are microergodic.

In this paper, we will extend the results of [13] (when d = 1 and the covariance function
is exponential) to the bivariate case. First we will consider the equivalence of Gaussian
measures, that is to say we will characterize which covariance parameters are microergodic.
In the univariate case, [16] characterize the equivalence of Gaussian measures with expo-
nential covariance function using the entropy distance criteria. We extend their approach
to the bivariate case. It turns out, similarly as in the univariate case, that not all covari-
ance parameters are microergodic. Hence not all covariance parameters can be consistently
estimated. Then we establish the consistency and the asymptotic normality of the MLE
of the microergodic parameters. Some our proof methods are natural extensions of those
of [13] in the univariate case, while others are specific to the bivariate case.

The paper falls into the following parts. In Section 2 we characterize the equivalence
of Gaussian measures, and describe which covariance parameters are microergodic. In
Section 3 we establish the strong consistency of the MLE of the microergodic parameters.
Section 4 is devoted to its asymptotic distribution. Some technical lemmas are needed
in order to prove these results and, in particular, Lemma 4.1 is essential to prove the
asymptotic normality results. The proofs of the technical lemmas are postponed to the
appendix. Section 5 provides a simulation study that shows how well the given asymptotic
distributions apply to finite sample cases. The final section provides a discussion and open
problems for future research.

2. Equivalence of Gaussian measures

First we present some notations used in the whole paper. If A = (a;;)1<i<k1<j<n 15 &
k x n matrix and B = (b;j)1<i<p.1<j<q 1S & p X ¢ matrix, then the Kronecker product of the
two matrices, denoted by A ® B, is the kp x ng block matrix

(IHB A (llnB
A@B=| i .
CLle ce aknB

In the following, we will consider a stationary zero-mean bivariate Gaussian process

observed on fixed compact subset T of R, Z(s) = {(Z1(s), Z5(s))", s € T'} with covariance

function indexed by a parameter ¢ = (02,02, p,0)" € R*, given by

Covy(Zi(s1), Zi(sm)) = aioj(p+ (1= p)licyle P 7oml i j=1,2. (1)

Note that 0%, 02 > 0 are marginal variances parameters and 6 > 0 is a correlation decay
parameter. The quantity p with |p| < 1 is the so-called colocated correlation parameter
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[30], that expresses the correlation between Zi(s) and Zy(s) for each s. For i = 1,2,
the covariance of the marginal process Z;(s) is Covy(Zi(s)), Zi(sm)) = o2e bls=sml Such
process is known as the Ornstein-Uhlenbeck process and it has been widely used to model
physical, biological, social, and many other phenomena. Denote by P, the distribution
of the bivariate process Z, under covariance parameter ). As we consider fixed domain
asymptotic, the process Z(s) is observed at an increasing number of points on a compact set
T. Without loss of generality we consider T'= [0, 1] and denote by 0 < s1 < ... < s, <1
the observation points of the process. Let us notice that the points sy, ..., s, are allowed to
be permuted when new points are added and that these points are assumed to be dense in T’
when n tends towards infinity. The observations can thus be written as Z,, = (ZlT s Z2T, )7
with Z;,, = (Zi(s1),...,Zi(sn))" for i = 1,2. Hence the observation vector Z, follows a
centered Gaussian distribution Z,, ~ N(0,3(¢)) with covariance matrix X(¢) = A ® R,
given by
o?  oq0
4= ( 0'10'12/) 10§2p ) , R= e s”]lém,lsw (2)

and the associated likelihood function is given by

Fal0) = (2m) " [S(y)| Y2 320 TEW T 2, (3)

The aim of this section is to provide a necessary and sufficient condition to warrant

equivalence between two Gaussian measures Py, and Py, with ¢; = (021,032,pi,0i)T,
1=1,2.
Specifically let us define the symmetrized entropy
I,(Py,, Py,) = Ey, log + Ey, log . 4
(Py1s Py,) = Ey, (g T Belos 00 (4)

We assume in this section that the observation points are the terms of a growing sequence
in the sense that, at each step, new points are added to the sampling scheme but none is
deleted. This assumption ensures that I,(Py,, Py,) is an increasing sequence. Hence we
may define the limit I(Py,, Py,) = lim, o0 I,(Py,, Py, ), possibly infinite. Then P, and
Py, are either equivalent or orthogonal if and only if I(Py,, Py,) < 0o or I(Py,, Py,) = 00
respectively (see Lemma 3 in page 77 of [9] whose arguments can be immeditaly extended
to the multivariate case). Using this criterion, the following lemma characterizes the equiv-
alence of the Gaussian measures Py, and Py, .

Lemma 2.1. The two measures Py, and Py, are equivalent on the o-algebra generated by
{Z(s), s € T}, if and only if 07,61 = 0746, i = 1,2 and py = p; and orthogonal otherwise.

Proof. Let us introduce A; = s; — s;_1 for ¢ = 2, ..., n and note that

ZAi <1 and Ilim max A; = 0.
=2

n—o0 2<i<n



Let R; = [eijlsmequmKn’ j = 1,2. By expanding (4) we find that

01,102,1P102

01,2022

—2 -

0.2
2’1] tr(RiRy ")

1 1 o7,
I,(Py,,Py) = = ’
<w1 w) 2{(1_/)%)[2 03,2

1 lUiQ
(1- P%) U%l

If 01-2,191 = 022,292 and p; = py for i = 1,2 we obtain

01,20220102

01,1021

—2 +

032
+ - } tr(Rlel)} — 2n.

021

)

0 0
I,(Py,, Py,) = e—jtr(Rle_l)Jre—;tr(Rngl)—2n.

In order to compute tr(R;R;") and tr(RyR; "), we use some results in [31]. The matrix

R; can be written as follows,

n
—0; S A
1 efejAQ e ]i:2
—0, 35 A,
_ e 0itz 1 e =5
R; =
—0; > A =05 > A
e =2 e =3 1
and Rj’1 can be written as
—0;A
1 —e 72
0B 1 n o—20j83
1_o 20583 |_,-20;53 1_e 20553
-1 _
Rj = 0 0
1 —20;An e 05Bn
—o 20501 1—e 20580 1_.-20;5n
0 0 e on !
1—e 20580 1—eo 20580
1 LR 1
Since, tr(R;R.") = > > (R ® Ry, )im, J. k =1,2,j # k, we have
i=1 m=1
tr(RR7Y) oy R 3 L Yy - R
r . — —_
Ik 1 — e—20k2i 1 — e—20k2 1 — e—20k2 1 — =20k
=2 =2 =3
i — 9= (05+0k) A +1+ e~ 20k A 1
o : 1 — =202
=2



Then, we can write I,(Py,, Py,) as
92 n (€791Ai GQA 291A
In(P¢17P¢2) = 0_1 Z 1 — e—2024; +Z e—2024; +1

91 n (e—GQAi GlA —292A
+9_2 Z 1— efzelA + Z o208, T L) —2n.

=2

For j,k = 1,2, 7 # k, as is obtained by Taylor expansion, since max; A; tends to 0, we
have

1 _ 672‘9in 0

max J

2<in | A;(1 — e=20680) A0,

( 79'Ai _ efOkAi)Q

=0O(1) and 221?2; A o)

=0(1)
Since ), A; tends to 1,
]n(Plﬂu sz) =7

and I (Py,, Py,) = lim, oo 1,,( Py, , Py,) < 00.
Then the two Gaussian measures Py, and Py, are equivalent on the o—algebra generated
by Z if and only if 03191 = 01272«92, 1=1,2, and p; = ps. . O

Note that sufficient conditions for the equivalence of Gaussian measures using a gen-
eralization of the covariance model (1) are given in [29]. A consequence of the previous
lemma is that it is not possible to estimate consistently all the parameters individually if
the data are observed on a compact set 7. However the microergodic parameters 026, 030
and p are consistently estimable. The following section is devoted to their estimation.

3. Consistency of the Maximum Likelihood Estimator

Let @/Z)\ = ( ,62.62.p)" be the MLE obtained by maxnmzlng fn(?) with respect to .
In the rest of the paper, we will denote by 6y, 02, i = 1,2 and py the true but unknown
parameters that have to be estimated. We let var = vary,, cov = covy, and E = Ky,
denote the variance, covariance and expectation under Py . In this section, we establish
the strong consistency of p, é&f and é&% , that is the MLE of the microergodic parameters.
We first consider an explicit expression for the negative log-likelihood function

Lo(1h) = —2log(fa (1)) = 2nlog(2m) +log [S(¥)| + Z,) [S(¥)] ™" Za. (5)

The explicit expression is given in the following lemma whose proof can be found in the
appendix.



Lemma 3.1. The negative log-likelihood function in Equation (5) can be written as

L,(v) = nllog(2m) + log(l — p*)] + Z log(c?) + Z Zlog o2 (1 — e 28]

k=1 i=2

2 2

Z 1 2 4 Z Zk i€ ZZlm‘ 1)
013 k1 1 — =204
=1
—0A, —0A,
2p Z1i— € 'Zl,zel) (Zz,i —e 12’2,2‘71)
- 211%2,1 + E To0A. )

0109 1—e g

=2

with z,; = Zi(s;) and A; = 8; — S;—1, 1 =2,...,n.

The following theorem uses Lemma 3.1 in order to establish strong consistency of MLE
of the microergodic parameters p, 002, fo3.

Theorem 3.2. Let J = (ag,bg) X (Go,, b5, ) X (Goysb5y) X (@), b,), with 0 < ag <y < by <
ooO<a01<001§b01<oo 0 < ap, <08y <by, <oo0and—-1<a,<py<b,<l.
Define 1/1 («9 62,63, p) as the minimum of the negative log-likelihood estimator, solution

of
b (1) = min 1, (¢)). (6)

ped

Then, with probability one, @E exist for n large enough and when n — +00

A 16 2) £0, (7)
A% 2) 900317 (8)
3 = Googy. 9)

Proof. The proof follows the guideline of the consistency of the maximum likelihood esti-
mation given in [13]. Hence consistency results given in (7), (8) and (9) hold as long as
we can prove that there exist 0 < d < D < oo such that for every € > 0, ¢ and 7, with
[ — ] > e

min_ {zn(¢) - zn(J)} 0 as. (10)
{yed, [[v—y|>€}

where 1 = (0, 72,52,52)7 € J can be any nonrandom vector such that

~ 02 2 02 2

o008
In order to simplify our notation, let W, = 2=¢ 2 hisl '} — 12 j =2 .., n By
U()k(l e—QGOA )

the Markovian and Gaussian properties of Z; and Zs, it follows that for each i > 2, Wy, ,,



is independent of {Z; ;,7 <i—1}, k = 1,2. Moreover {Wj;,,2<i<n}, k= 1,2 are
an i.i.d. sequences of standard Gaussian random variables. Using Lemma 3.1 we write,

2 n zk Zk )2
29A ) ji—1
2/) - (2’1,2‘ — 6_%’21,@'71) (22,1' —e 0A122,i71)
+<1 — %) o10a(1 — e—2050) + nlog(2m) + c(¢, n),

=2

2 21,1%
with ¢(¢,n) = Ezzl log o2 + nlog (1 — p?) L [ z:1 ;“—]%1 — QpM} and from the

1—p 0102

proof of Theorem 1 in [13], uniformly in 0 < 6 < dy and 0} € [a,,, b5, ], k =1,2:

n

n —0A; 2 2 2004
i~ ki E : 1 - ’ W2
Z (zk, e "z, 1) _ ope(l—e ) Zin 0N %) kE=1,2. (11)

LI e W) L (1 )

Moreover, from Cauchy-Schwarz inequality,

n — . n —
0A ]_—6 290A)

z— e %z 00) (20 — ez ) 2 . 3
: i ’ ’ 2
Z o109(1 — e72044) = H Z 2(1 — e=200) Wiin + O(n2) | ,

1=2 k=1

and from Lemma 2(ii) in [13] uniformly in § < R and o} € [a,,,b,,], for every a; > 0,
with £ =1, 2,

n —2004; )

2
op(l—e 2 UOkHO 1 lia _
E a,?(l T Wiin = 29 (n—1)+ 50(712* M), k=1,2. (13)

=2

Combining (11), (12) and (13), we can write,

1
1—p?

NI

L) > nlog(2m) + c(v,n +ZZlog )

k=1 i=2
1 —e —200A; )
1 — =204 ) kyi,n

2p UOkQO 1 1 1 o2, 0o
_ — O(nstary — 290k
1—p2nH< 026 Y (n27%) n oif

O(n2)

UOk




Therefore

ln(@z)) - ln(@z)

Vv
=
=
=
3
+
(]
i 3
(V)
S
l—l
Q
ol )
—
K
>
.

+ i n L og(l— e ) 1 og(1 —e?0%) i
el Rl op(l—e 208) 1 —p? 52(1 — e~200:) o
2
— 2p E H (O-gkeo 1 O( —+ak) 1 O-Okeo)
1—p*0 Pl o} n o;
1
2p 1 1)\ 2
+ p~27’L (1 + —A,O(TL%—’—O%) . _)
1 —r k=1 no n
1 1 1 1
+ 1—p20(n2)+ﬁ0(n2)’

where p(1), 0, n) = c(y,n)— c({/;, n). From lemma 2 in [13], for some Mj, > 0 and uniformly
in 0 < R and o} € [ag,, b5, ], k =1,2

Zlog [ai (1- ZzZi;] > Zn:log (Mik) = (n—1)log (Mi]) L k=12, (14)

1=2
and
n 1 1— —2004\; 1 2 1— —200A;
B P >] W (15)
— [1—p* oj(1— e %) L —p? G2(1 — e—200)
1 0'2 00 1 ) 1
= (n—1 Ok 2 +607'0(nztx), k=1,2.
(= 1) <1 A
Let p = min {p, p} and combining (14) and (15), we can write,
l (0 p7 01702) l (0 p7 0%703) Z P(@/)ﬂ/}a”) +Z 2 v 2 +O(n7k_ )
01 —p3) L op
2 a0 2 M, 1
SR S [l () - 1]
— 1 p oib —1 4 1 —pg
‘7019‘90 1 Liayy _ l_agkeo :
P20 H ( o? Oln2™™) n o;
2 1
2p0 ( 1 1) 2
+ n 1+ —~O nztor) — — ) |
1—pj kl;[l no ( ) n

for some v < 1, k = 1,2, where the O(n) term is uniform in 6 < R.
Since some log(6)~! = 0(#71) as 6 | 0, we can choose §y small enough so that for all § < dy,

9



0(2) 6o
2b,0

—1—log(&) > n, which implies that with probability 1,

+

2
o ~ n 1 2.0 B
l (0 pv 01702) l (0 p7 0%705) Z p(wvd)an) (71 —pz) {5 E 20;3 0 <F0(n,wC 1)
0 k=1 "%k

Thus we get (10) by letting dy = dg.
Hence, since p(1,1,n) — 0,

0 Z 2, | s

and

2 1 2 1

1 (026 1 102602 1 1 1\2
—9 - 0kY0 O ak—35\ _ _ 0kY0 . 1 :O ag—35) _ _ <
pOIHe(o—,z+<” )= ) T (1 o0 = )| <o
k=1 k=1
we prove that
min~ {l (0 Ps 0-170-2) l (0 ﬁv 6%733)} — 0
{Wed, [p—yll>e}

when n — oo, uniformly in 6 < dy. O

4. Asymptotic distribution

Before we state the main result on the MLE asymptotic distribution, we need to in-
troduce some notation that will be used throughout this paper. Because of Theorem
3.2, there exists a compact subset S of (0,+00) x (0,+00) x (0,400) x (—1,1) of the
form © x V x V x R, such that a.s. ’(Z} belongs to S for n large enough. We let O,(1)
denote any real function g,(0,p, 0%, 02) which satisfies SUP (g, ,02,02)cs |9n (0, p; o2, 03)| =
O(1). For example 0o1/(1 — p*) = O,(1). We also let O,,(1) denote any real function
9n(0, p, 07,03, Z1n, Zon) which satisfies sup g , .2 521e5 (90(0; p, 07,03, Z10, Zan)| = Op(1).
For example z; 101 = O,,(1).

The following lemma is essential when establishing the asymptotic distribution of the
microergodic parameters.

Lemma 4.1. With the same notations and assumptions as in Theorem 3.2, let

1(0) — (215 — 6_6&21,@'71)(22,@' —e Pizgi )
( ) o Z 1 — 6*29Ai ’

—0A

=2

10



and G = [0/00]L(0). Let forn e N andi=2,...,n

N —00A;
(21 — € PRz ) (227 — e7Pizg ;)

0010021/ 1+ pg(l — 67290Ai)

n are independent with E(Y;,) = po/(1 + p2)¥/? and

Then for all n € N, the (Yi,)izo,..
var(Y;,) = 1. Furthermore we have

o 001002\/ 1+ p2by ZY’" + 0u(1)

Using the previous lemma, the following theorem establishes the asymptotic distribution
of the MLE of the microergodic parameters. Specifically we consider three cases: first
when both the colocated correlation and variance parameters are known, second when
only the variance parameters are known and third when all the microergodic parameters
are unknown.

Theorem 4.2. With the same notation and assumptions as in Theorem 3.2, if a5, = by, =

k
0l =62 fork=1,2,a,=0b,=py=p and ag < Oy < by then

V(8 — 8y) 25 N (0,62) . (17)
If ay, = b,, = agk =067 fork =1,2, a, < po < b, and ag < 0y < by, then

NG (9 - 90) 25 N(0,5,) (18)

P — Po
05(L+p5)  Bopo(1 — pp)
where g, = 0 0 0P o).
o (‘90/)0(1 - /)3) (P% - 1)2

Finally, if a,, < agk < by, fork=1,2,a,<py<b, and ag < 0y < by, then

p = Po
2(0005,)” 2(60poo01002)*  Gopoosy (1 — pp)
where Zf = 2(90p00'010'02>2 2(900'82)2 90p00'82(1 — p%)
Oopooi (1 —p3) Oopooia(l—p3)  (pg— 1)

Proof. Let s,(¢) = a%ln(w) the derivative of the negative log-likelihood with respect to
r = 0},0%,0,p. From Lemma 4.1 and from Equation (3.11) in [13] we can write, with
Wi.in as in the proof of Theorem 3.2,

2
O'Oke(] 9 1 0'010'0290
= E E We. —2p(1 E Y; .
89(’17[)) < ]%92 kyi,n p( + o 0_292 Zn) +Oup ) ( )

=1 1=2

11



Then from (20) we have

- P)sal) = (n—1) (2001 — ) — by (L — 2pp, 7002 4 T2 (1)
o2 0109 o3
2 n n
500 1, 001002
_Z 0k2 sz"‘Q/)(l"‘p(Q)) bo o Z§3Z+Oup(1)v
k=1 i=2 172 s
with &, =W, — 1, k=1,2and &,; =Y, — —2—~

Then ¢ satisfies s¢(1)) = 0 and in view of (21), we get

R R . . R o . 0010, od
0= 61— Pso(d) = (n—1) [w(l—p?)—eo(g—zppo o | )} (22)

1 0102 02

02,0 0010
—ZZ % °£m+2p<1+po) 20, ?R”Zauw (1).

k=1 i=2

If we set a, = by, =05, =071 for k=1,2 and a, = b, = pp = p in (22), we get

0=2(n—1) (é—eo>(1—p%>}—eo [ZZSM—MOH,% ngz +0,(1). (23)

k=1 i=2

Hence (23) implies

_1 2 n
\/ﬁ(é - 90) [Z fk i 2p0 + /)0 Z 531

1 i=

+0, ( %> .
On the other hand, from the multivariate central limit theorem we get

n (&1
nié Z §2,i i) N <O7 Eﬁ) ) (24>
=2 \&3,
2 2 2 2p0
) Ao (1J5g%)
0
where ¥, = 2Py 2 (1+42)
2p0 . 2p0 . 1
(14+p3)2  (14p3)2
m,l=1,23andi=2,...,n
Hence we have

[N

, is obtained by calculating Cov (&, &) for

ol

~

V(0 —60) 25 N (0, %),

2 2 2 2/’0
2 , 7 (4rd) 1
0 1 _2p0 _
where Yy = 4(170/)3)2 (1 1 —2po(1+ /)3)2) 200 2 (1+02)2 ! 1
2p0 2p0 1 —2po(1 + p})?

1 1
(1+p3)2  (14p3)2
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Then, computing the previous quadratic form, we get
Vil — 65) 25 N (0,62)

so (17) is proved. Now, we first prove (18) and (19) for py € (—1,1)\{0} and discuss the
case po = 0 at the end of the proof. To show (18), take differentiation with respec to p.
From the proof of Theorem 2 given in [13], and from arguments similar to those of the
proof of Lemma 4.1, we get

o —277,p O'Oke() (1 + p2)<1 + po 20'010'0290
SP(Q/}) - (1 —p ) (Z Z p0_10_29 Z Y; n)

k=1 i=2

+0,,(1). (25)

Then (25) implies

2

_wsp(w) — o) {9(1 ~ A -4, (0_021 _ (A4 2)poo0oe 0_822” (26)

2p o7 p 0109 lop
_ZZUOH% A (1+p*)(1 +/)0) 0o 001002 253
k=1 i=2 P 7102 55
+0u(1),

Then 1) satisfies s,(1)) = 0 and in view of (26), we get

(1—p%% 5 2 ot (L+5°)poooioos | 05y
__ LT p)e — (=100 =) -0 _
0 2p\ Sp(w) (n ) ( p ) 0 6_% pA 0_1 0_2 + 0_%
_ZZ UOkeofk (1451 + ) 0o 001002 253
k=1 i=2 l p G103 i=2 Z
+0,(1). (27)

Then we can write, from (22) and (27)

0\ _ gy [0 (5 2z 4 )
a é(l _ pA2> _ 90 (UA_(Q)Ql _ (1+Q )P0 g01002 ‘{_(2)22)

o7 p G102 05

oifo gipfo 951 4 p2)afyemon) (D0,

. 63 5 0162 n -
08190 08290 o (1+ﬁ )(1+P0) 2 00 og1002 Z%ZQ §2’Z - Op(l) (28>
o7 o3 P 5162 D ico &3
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If we set a,, =b,, = o5, = 0% for k =1,2 in (28), we get

0) = - 20(1 = %) — 200 (1 = jpo)
o) — " 0(1— %) — o 2_%>
1 1 —2p(1+ p§) EZZQ §1,i
B <1 1 —+p)(4p5)2 )(1+P ) 2#2 §a2 | + Op(1)
ZiZZ §3,i
2(0 — 00) — 26 (05— o)
(0~ 00) = 5 (85— opo) — (5~ po)

L 1 —2po(1+ 2)2 Z?:zfl,i
_00[<1 1 ioé#%)go) >+0p(1)] S, b | +0,(1). (29)

l\)\»—‘ [SIES

= (n—1)

po Z?:Q &3,
Furthermore,
2(@790) 72/) (éﬁ*@opo) (2 _2p 0 ) 99—990
~(h5 = 5 bt p — topo
(9*90)*0(90*9000)*%”(P*Po) P p 5— po
r é* 90
2 —2pp 0 A Ao
- (1 —po _9_o> +0p(1)] po(990)+9(pp0)>
i P p—po
- /1 0\ ,.
2 —2p9 O > ] " <9 _ 90>
= + 1 0 R
_<1 —Po 2_0 orll) %) 1) \P—po
[ 1 0 X
2 =2pp O 6 — 6,
(1 —Po ﬁ—ﬁ) (poo 10 ol )] (/3 - /)0)

By taking the inverse of the 2 x 2 matrix in (30), we get from (29):

boe)_, o b3 0 (&t
a0y —ent( 5 2 ) (EhG )+

Wo 200 0o 2ia Eai
From (24) we can get

Vvn <€_9°> 25 N(0,5,)

P = Po
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where

2 2p0
2 205 T T
1 1 0 (1+45)2 1 1 0
5 02 2 2 ) pg ) 2po . 2 2
— 2 L 2 .
O =70 _po _po VIR (143)2 _p  _p NI
260 2600 6o 2p0 2po 1 260 2600 6o

1 1
(14+p3)2  (14p3)2

Then, we get that
0 — o 03(1+p3)  Bopo(1 — p%)))
— N (0, . 31
- (p Po) D ( <00po(1 —p) (—1+p3) (31)

Let us now show (19). Similarly as for (25), we can show

n 00100 9 1 00100290
2 = - —— W 1 2 Yin 4 Oup( 32
801<w) 0_% (1_ 92 1zn+p< +p0) 0_10_292 + p ( )
Then (32) implies
od 0010,
1= P0s(0) = (- 1) [eu =00 (B - o ;jajz)} )

Z&ﬁp 1+ p2)36, "% ”Zsmoup( ).

Then ¢ satisfies s 2(@/3) 0 and in view of (33), we get

~ ~\ A ~ N n 02 .~ 0010
0=07(1—p*0s,2(¢) = (n—1) [9(1 — ) — 6o (% — 500 91})2)]

1 0102

Z§11+p 1+p0) 00091A022§3z+0 ) ( )

Then we can write, from (22), (27) and (34)

. 26(1 00 (B — 2572z + %7 )
2 2
8 — (n—l) 1_A2 ‘90(%_ 1+P Poagigf_'_%)
~2

0(1— p*) — 6, (%—PP %)
‘7(2)}290 ‘7(212290 —2/3(1+p) 9 701002

S 6182 Dol
| o bt e onmn | (S 6 ) +0,(1).  (35)
gl 72 4 7102 S s
0, 0 A 0010 =2 5
B0 ) )\
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If all parameters are uknown, we get after some tedious algebra:

I N "
0 62 63 &21&2 90’% — 900’81
_ _ 11 g+ ) 2
0] = (n-1) 67 52 6102 ) 055 — oo,
0 L __P 0p6169 — 0000010
5 0 i PO102 0£0001002

2 2
a5100  ggab0 25(1 001002
) ) - ,0( +p )20 n
0 0102 Do €1

91 I3
_ 0(211290 ‘7(212290 _(14p? )(1+P0)790 001002 2?22 5271. + Op(l)'
I Iz p 6162
2 10 2 Zn 53 .
901% _A 001002 i=2 83,1
[7% 0 p(l _'_ p ) 9 6162

0 e 0 0N\ (B3 -2 053 — Oy03,
0] = (n—1) &11&2 &11&2 (1) 0 0 . ;1 . 063 — 000t
0 5162 6162 0 —Z—; p 095162 — Oopocoron:
g & 1 ~ n
55 0 0 onE o 21 Jr:00)2001002p S L
_00 &1162 [711&2 (1) 0 0 (1 + pO) 2 001002—1 Zz 2 52 {
5162 5162 0 —opZ (1 +p0)2001002p 2is2§aa
+Op(1).
Hence we get
0 g_gi Z_E; _22p0 9:6'% — 900'31
0] = (n—1 0 0 2= 1401 062 — B0,
0 0 =22 po 0po162 — Bopooo10o2
001002 001002 —2po(1 + Pol)%a 1002 S L€
_90 0 0 w}%o)ﬁgolgog + Op<1> ZZ:Q §2,i
0 —001002  po(l+ po)20010’02 2 iz Ea
+0,(1).
Furthermore, we have
-1 1
om 2 —2po 001002 00002 —2po(l + /)0)20'010'02 o2 0
271 2
O (07 pop_o 0 0 7([) )/()(1)+p0) 001002 = O 002
0 =% M 0 —001002  poll +p0)2<701<702 0
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Hence, from (37) and (36), we obtain

Q:OA'% — 000'81 . Oo1 0 0 Z?:Q gl,i
N 062 — 002, =62 | 0 0p 0 Dia b2 | +op(1).
0po162 — Bopooo10o2 0 0 +/p§+1looioo > ima &3

Hence from (24) we can get

NA2 2
‘?01 — bhog o
~9 2
\/E 00’2 — 000’02 — N (07 Zepalag) )
0pc109 — 0opooo1002

where ) 2
2 2 __4pP0
o2 0 0 2 Gt fad 0 0
o
Soporos =03 | 0 05y 0 204 2 Tl 0 of 0
0 0 \/ pg + logi1002 2p0 . 2p0 . 1 0 0 \ pg + log1002
(1+03)2  (1+p8)2
Then, we get:
2(6005,)*  2(60po001002)*  203p000, 002
Soporos = | 2(60p0001002)>  2(0p05,)? 203 p0052001
203p0oino02  205p00001 O3 (p5 + 1)%06,05,
663 0t
Let f é&% = 053

0566 095162
pno) \ Vst
Then, using the multivariate Delta Method we get

)52 2

\/ﬁ 963—90032 i>-/\/’(Oazf)a

P = Po

1 0 0

where ¥y = HfngalmeT and Hy = 0 1 0

1

_20?1)60 _20?2)60 70100260
Finally, we get
5’%@ — o0\ 2(0oo,)” 2(00po001002)*  Bopooiyy (1 — pp)
Vn | 630 — o200 | — N |0, | 2(60pocoi00s)? 2(0p02,)? Oopoody (1 — pd)
p—po Oopoogi (1= p5) Oopooiy(1—p5)  (p§ —1)°

(38)
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In the case py = 0, we can show that (31) and (38) are still true with the same proof.
The only difference is that we multiply the second line of (28) and (35) by p. We skip the
technical details. O

5. Numerical experiments

The main goal of this section is to compare the finite sample behavior of the MLE of
the covariance parameters of model (1) with the asymptotic distribution given in Section
4. We consider two possible scenarios for our simulation study:

1. The variances parameters are known and we estimate jointly py and 6.
2. We estimate jointly all the parameters 02, 0g,, po and 6.

Under the first scenario we simulate, using the Cholesky decomposition, 1000 realiza-
tions from a bivariate zero mean stochastic process with covariance model (1) observed on
n = 200,500 points uniformly distributed in [0, 1]. We simulate fixing 03, = 02, = 1 and
increasing values for the colocated correlation parameter and the scale parameter, that
is po = 0,0.2,0.5 and 0y = 3/x with z = 0.2,0.4,0.6. Note that 6, is is parametrized
in terms of practical range that is the correlation is lower than 0.05 when the distance
between the points is greater than x. For each simulated realization, we compute p;
and éi, ¢ = 1,...,1000, i.e. the MLE of the colocated correlation and scale param-
eters. Using the asymptotic distribution given in Equation (18) Tables 1, 2 Compare
the empirical quantiles of order 0.05,0.25,0.5,0.75,0.95 of [\/n 0 — by /\/02 1+ p3)]iogo

and [v/n(p; — po)/v/ (P2 — 1)2]1°0 respectively, with the theoretlcal quantiles of the stan—

dard Gaussian distribution when n = 200,500. The simulated variances of p; and éz for
1=1,...,1000 are also reported.

As a general comment, it can be noted that the asymptotic approximation given in
Equation (18) improves and the variances of the MLE of py and 6y decrease when increasing
n from 200 to 500. When n = 500 the asymptotic approximation works very well.

Under the second scenario we set o3, = 03, = 0.5 and the other parameters as in
Scenario 1. In this case we simulate, using Cholesky decomposition, 1000 realizations
from a bivariate zero mean stochastic process with covariance model (1) observed on
n = 500, 1000 points uniformly distributed in [0,1]. For each simulated realization, we
obtain 62, 62, p; and 6;, i = 1,...,1000 the MLE of the two variances, the colocated
correlation and scale parameters. Using the asymptotic distribution given in Equation
(19), Tables 3, 4, 5 compare the empirlcal quantiles of order 0.05,0.25,0.5,0.75,0.95
of [\/_<le 00190 /V/2(08:100)21°F, [Vn(63:0; — 03200)/1/2(052/00)*1i1 and | (
p0)/+/ (P2 — 1)2]1%9° respectively, for n = 500,1000 with the theoretical quantlles of the

standard Gaussian distribution. The simulated variances of &%iéi , &Siéi and p; and for
1 =1,...,1000 are also reported. As in the previous Scenario, the asymptotic approxi-
mation given in Equation (19) improves and the variances of the MLE of py and 03;6p,
1 = 1,2 reduce when increasing n from 500 to 1000. When n = 1000 the asymptotic
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Ln | 6 [po| 5% | 25% | 50% | 75% | 95% | Var |
200 [ 3/0.2 ] 0 [-1.6070 [ -0.6521 | -0.0335 [ 0.6812 [ 1.7225 [ 0.0051
500 | 3/0.2 | 0 | -1.6416 | -0.6255 | 0.0022 | 0.6675 | 1.6499 | 0.0019
200 | 3/0.2 [ 0.2 | -1.6755 | -0.6749 | -0.0161 | 0.7149 | 1.6455 | 0.0048
500 | 3/0.2 | 0.2 | -1.6336 | -0.6786 | -0.0113 | 0.6712 | 1.6361 | 0.0018
200 | 3/0.2 [ 0.5 | -1.7768 | -0.6809 | -0.0232 | 0.6583 | 1.6119 | 0.0030
500 | 3/0.2 | 0.5 | -1.6586 | -0.6490 | 0.0146 | 0.6321 | 1.6709 | 0.0011
200 | 3/0.4 [ 0 |-1.6185 | -0.6531 | -0.0292 | 0.6852 | 1.7259 | 0.0051
500 | 3/0.4 | 0 | -1.6454 | -0.6248 | -0.0029 | 0.6616 | 1.6457 | 0.0019
200 | 3/0.4 [ 0.2 | -1.6781 | -0.6688 | -0.0031 | 0.7142 | 1.6576 | 0.0048
500 | 3/0.4 | 0.2 | -1.6291 | -0.6750 | -0.0059 | 0.6755 | 1.6629 | 0.0018
200 | 3/0.4 [ 0.5 | -1.7716 | -0.6874 | -0.0282 | 0.6580 | 1.6226 | 0.0030
500 | 3/0.4 | 0.5 | -1.6436 | -0.6534 | 0.0082 | 0.6270 | 1.6788 | 0.0011
200 | 3/0.6 | 0 | -1.6179 | -0.6554 | -0.0288 | 0.6845 | 1.7200 | 0.0051
500 | 3/0.6 | 0 | -1.6487 | -0.6466 | -0.0019 | 0.6645 | 1.6513 | 0.0019
200 | 3/0.6 | 0.2 | -1.6908 | -0.6694 | -0.0088 | 0.7120 | 1.6681 | 0.0048
500 | 3/0.6 | 0.2 | -1.6286 | -0.6767 | -0.0111 | 0.6704 | 1.6608 | 0.0018
200 | 3/0.6 | 0.5 | -1.7810 | -0.6950 | -0.0354 | 0.6642 | 1.6121 | 0.0030
500 | 3/0.6 | 0.5 | -1.6407 | -0.6537 | 0.0073 | 0.6255 | 1.6686 | 0.0011

N(0,1) -1.6448 | -0.6744 0 0.6744 | 1.6448

Table 1: For scenario 1: empirical quantiles, and variances of simulated MLE of pg for different values of
po and 6y, when n = 200, 500.

approximation is quite satisfactory, with the exception of the case py = 0.5 where some
problems of convergence on the tails of the distributions can be noted, in particular when

0, = 3/0.4,3/0.6.

6. Concluding remarks

In this paper we considered the fixed domain asymptotic properties of the MLE for a
bivariate zero mean Gaussian process with a separable exponential covariance model. We
characterized the equivalence of Gaussian measures under this model and we established the
consistency and the asymptotic distribution of the MLE of the microergodic parameters.
Analogue results under increasing domain asymptotics are obtained by [25]. It is interesting
to note that the asymptotic distribution of the MLE of the colocated correlation parameter,

between the two processes, does not depend on the asymptotic framework.
Our results can be extended in different directions. Let M (h, v, 0) = %1(—;; ([|n]16)" K., (|]h]]60),

h € R? 1,0 > 0, be the Matérn correlation model. A generalization of the bivariate co-
variance model (1) is then the following model:

Cov(Zi(s), Zij(s + h); ) = ai0i(p+ (1 — p)licj) M(h,v,0:5), 1,5 =1,2,

with 0912 = 0921, o1 > 0, oo > 0, where in this case ’l/) = (057037911,912,922,V7 p)T This is
a special case of the bivariate Matérn model proposed in [30]. The authors give necessary
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[ n ] 6 [p | 5% | 25% | 50% | 75% | 95% | Var |
200 [ 3/0.2 ] 0 [-1.6567 | -0.7382 [ -0.0978 [ 0.6805 [ 1.7761 | 2.50e-05
500 | 3/0.2 | 0 | -1.6838 | -0.7447 | -0.0469 | 0.6684 | 1.6369 | 9.23e-06
200 | 3/0.2 [ 0.2 | -1.6176 | -0.7432 | -0.0651 | 0.6583 | 1.8583 | 2.61e-05
500 | 3/0.2 | 0.2 | -1.6962 | -0.7370 | -0.0260 | 0.6533 | 1.6414 | 9.61e-06
200 | 3/0.2 [ 0.5 | -1.6032 | -0.7028 | -0.0725 | 0.6689 | 1.8607 | 3.12e-05
500 | 3/0.2 | 0.5 | -1.6530 | -0.7169 | -0.0600 | 0.6758 | 1.6320 | 1.13e-05
200 | 3/0.4 | 0 |[-1.5910 | -0.7551 | -0.0907 | 0.6715 | 1.8092 | 9.68e-05
500 | 3/0.4 | 0 |-1.6852 | -0.7522 | -0.0367 | 0.6661 | 1.6850 | 3.64e-05
200 | 3/0.4 [ 0.2 | -1.6073 | -0.7242 | -0.0731 | 0.6261 | 1.7977 | 1.01e-04
500 | 3/0.4 | 0.2 | -1.6841 | -0.7469 | -0.0217 | 0.6649 | 1.6060 | 3.79e-05
200 | 3/0.4 [ 0.5 | -1.5561 | -0.6992 | -0.0599 | 0.6578 | 1.8200 | 1.02e-04
500 | 3/0.4 | 0.5 | -1.6410 | -0.7191 | -0.0577 | 0.6772 | 1.6024 | 4.48¢-05
200 [ 3/0.6 | 0 | -1.5563 | -0.7307 | -0.0847 | 0.6711 | 1.8093 | 2.15e-04
500 | 3/0.6 | 0 |-1.6737 | -0.7421 | -0.0352 | 0.6635 | 1.6752 | 8.16e-05
200 | 3/0.6 | 0.2 | -1.5693 | -0.7187 | -0.0694 | 0.6130 | 1.8244 | 2.01e-04
500 | 3/0.6 | 0.2 | -1.6821 | -0.7473 | -0.0373 | 0.6579 | 1.6315 | 8.49e-05
200 | 3/0.6 [ 0.5 | -1.5666 | -0.6765 | -0.0638 | 0.6659 | 1.8175 | 2.05¢-04
500 | 3/0.6 | 0.5 | -1.6373 | -0.7232 | -0.0566 | 0.6669 | 1.6208 | 1.03e-04

N(0,1) -1.6448 | -0.6744 0 0.6744 | 1.6448

Table 2: For scenario 1: empirical quantiles, and variances of simulated MLE of 6, for different values of
po and 6y, when n = 500, 1000.

I n | 6 [ po]| 5% [ 25% | 50% [ 7% | 95% | Var |
500 [3/0.2] 0 [-1.4333]-0.5971 | 0.0547 [ 0.7163 | 1.7152 [ 0.2100
1000 | 3/0.2 | 0 | -1.6085 | -0.6291 | 0.0338 | 0.7331 | 1.65266 | 0.1102
500 | 3/0.2 | 0.2 | -1.4331 | -0.5964 | 0.0535 | 0.7160 | 1.7142 | 0.2106
1000 | 3/0.2 | 0.2 | -1.6022 | -0.6257 | 0.0356 | 0.7348 | 1.6526 | 0.1095
500 | 3/0.2 | 0.5 | -1.4333 | -0.5945 | 0.0520 | 0.7163 | 1.7151 | 0.2098
1000 | 3/0.2 | 0.5 | -1.6115 | -0.6327 | 0.0336 | 0.7339 | 1.6501 | 0.1110
500 | 3/0.4 | 0 |-1.4277 | -0.5827 | 0.0427 | 0.6999 | 1.6847 [ 0.0519
1000 | 3/0.4 | 0 | -1.6158 | -0.6364 | 0.0370 | 0.7277 | 1.6263 | 0.0275
500 | 3/0.4 ] 0.2 | -1.4276 | -0.5799 | 0.0427 | 0.6999 | 1.6844 | 0.0518
1000 | 3/0.4 | 0.2 | -1.6109 | -0.6299 | 0.0459 | 0.7412 | 1.6357 | 0.0276
500 | 3/0.4 | 0.5 | -1.4276 | -0.5827 | 0.0387 | 0.6938 | 1.6842 | 0.0517
1000 | 3/0.4 | 0.5 | -1.6090 | -0.6275 | 0.0380 | 0.7402 | 1.6346 | 0.0275
500 | 3/0.6 | 0 |-1.4229 | -0.5847 | 0.0406 | 0.6995 | 1.6997 | 0.0228
1000 | 3/0.6 | 0 | -1.6241 | -0.6314 | 0.0393 | 0.7411 | 1.6377 | 0.0123
500 | 3/0.6 | 0.2 | -1.4235 | -0.5833 | 0.0433 | 0.7090 | 1.6999 | 0.0228
1000 | 3/0.6 | 0.2 | -1.6234 | -0.6318 | 0.0343 | 0.7377 | 1.6365 | 0.0123
500 | 3/0.6 | 0.5 | -1.4235 | -0.5833 | 0.0433 | 0.7090 | 1.6999 | 0.0228
1000 | 3/0.6 | 0.5 | -1.6234 | -0.6318 | 0.0343 | 0.7377 | 1.6365 | 0.0123

N(0,1) -1.6448 [ -0.6744 | 0 | 0.6744 | 1.6448

Table 3: For scenario 2: empirical quantiles, and variances of simulated MLE of o3, 0, for different values
of pg and 6y, when n = 500, 1000.
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' n | 6 [ p| 5% [ 25% | 50% | 7% | 95% | Var |
500 [3/0.2] 0 [-1.5318 [ -0.6282 [ 0.0544 [ 0.7382 [ 1.8544 [ 0.2336
1000 | 3/0.2 | 0 |-1.5134 | -0.6382 | 0.0628 | 0.7003 | 1.7527 | 0.1150
500 | 3/0.2 | 0.2 | -1.5067 | -0.6272 | 0.0411 | 0.7359 | 1.7854 | 0.2364
1000 | 3/0.2 | 0.2 | -1.4653 | -0.6415 | 0.0728 | 0.7239 | 1.7743 | 0.1155
500 | 3/0.2 | 0.5 | -1.4734 | -0.6078 | 0.0308 | 0.7732 | 1.8493 | 0.2336
1000 | 3/0.2 | 0.5 | -1.4260 | -0.6438 | 0.0192 | 0.7809 | 1.7520 | 0.1149
500 | 3/0.4 | 0 | -1.5173 | -0.6479 | 0.0598 | 0.7225 | 1.8452 | 0.0578
1000 | 3/0.4 | 0 | -1.5014 | -0.6395 | 0.0604 | 0.6989 | 1.7377 | 0.0287
500 | 3/0.4 | 0.2 | -1.5164 | -0.6275 | 0.0553 | 0.7537 | 1.7436 | 0.0580
1000 | 3/0.4 | 0.2 | -1.4724 | -0.6442 | 0.0494 | 0.7260 | 1.7822 | 0.0288
500 | 3/0.4 | 0.5 | -1.4877 | -0.6099 | 0.0252 | 0.7725 | 1.7729 | 0.0581
1000 | 3/0.4 | 0.5 | -1.4488 | -0.6495 | 0.0117 | 0.7565 | 1.7381 | 0.0287
500 | 3/0.6 | 0 | -1.5448 | -0.6447 | 0.0705 | 0.7226 | 1.8264 | 0.0257
1000 | 3/0.6 | 0 | -1.4940 | -0.6560 | 0.0548 | 0.7055 | 1.7365 | 0.0128
500 | 3/0.6 [ 0.2 | -1.5122 | -0.6379 | 0.0668 | 0.7553 | 1.7310 | 0.0257
1000 | 3/0.6 | 0.2 | -1.4466 | -0.6450 | 0.0541 | 0.7316 | 1.7923 | 0.0128
500 | 3/0.6 | 0.5 | -1.4768 | -0.6128 | 0.0325 | 0.7605 | 1.7396 | 0.0258
1000 | 3/0.6 | 0.5 | -1.4464 | -0.6549 | -0.0115 | 0.7551 | 1.7464 | 0.0128

N(0,1) -1.6448 | -0.6744 0 0.6744 | 1.6448

Table 4: For scenario 2: empirical quantiles, and variances of simulated MLE of 03,0, for different values
of pg and 6y, when n = 500, 1000.

Ln [ 6 [ po] 5% [ 25% | 50% | 75% | 95% | Var |
500 [3/0.2] 0 [-1.6477 [ -0.6271 | 0.0016 | 0.6795 | 1.6786 | 0.0019
1000 | 3/0.2 | 0 |-1.7235 | -0.6167 | 0.0516 | 0.6975 | 1.7051 | 0.0010
500 | 3/0.2| 0.2 | -1.6431 | -0.6714 | 0.0037 | 0.6518 | 1.6418 | 0.0018
1000 | 3/0.2 | 0.2 | -1.6620 | -0.5992 | 0.0460 | 0.6906 | 1.6757 | 0.0009
500 | 3/0.2 0.5 | -1.6193 | -0.6434 | 0.0123 | 0.6220 | 1.6585 | 0.0011
1000 | 3/0.2 | 0.5 | -1.6582 | -0.6445 | 0.0563 | 0.6729 | 1.5996 | 0.0005
500 | 3/0.4| 0 |-1.6486 | -0.6283 | -0.0091 | 0.6684 | 1.6600 | 0.0019
1000 | 3/0.4 | 0 | -1.7296 | -0.6209 | 0.0365 | 0.6967 | 1.7151 | 0.0010
500 | 3/0.4 | 0.2 | -1.6407 | -0.6589 | -0.0074 | 0.6509 | 1.6631 | 0.0018
1000 | 3/0.4 | 0.2 | -1.6840 | -0.6067 | 0.0253 | 0.6845 | 1.6823 | 0.0009
500 | 3/0.4 | 0.5 | -1.6160 | -0.6529 | -0.0045 | 0.5987 | 1.6543 | 0.0010
1000 | 3/0.4 | 0.5 | -1.6669 | -0.6434 | 0.0577 | 0.6734 | 1.6171 | 0.0005
500 | 3/0.6 | 0 |-1.6504 | -0.6280 | -0.0092 | 0.6890 | 1.6550 | 0.0019
1000 | 3/0.6 | 0 | -1.7330 | -0.6214 | 0.0370 | 0.6931 | 1.7297 | 0.0010
500 | 3/0.6 | 0.2 | -1.6412 | -0.6525 | 0.0050 | 0.6653 | 1.6603 | 0.0018
1000 | 3/0.6 | 0.2 | -1.7102 | -0.6111 | 0.0201 | 0.6738 | 1.6908 | 0.0009
500 | 3/0.6 | 0.5 | -1.6536 | -0.6510 | 0.0070 | 0.6169 | 1.6561 | 0.0011
1000 | 3/0.6 | 0.5 | -1.6776 | -0.6496 | 0.0617 | 0.6714 | 1.6175 | 0.0005

N(0,1) -1.6448 | -0.6744 0 0.6744 | 1.6448

Table 5: For scenario 2: empirical quantiles, and variances of simulated MLE of pgy for different values of
po and 6y, when n = 500, 1000.
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and sufficient conditions in terms of v for the validity of this kind of model. Studying the
asymptotic properties of the MLE of 1) would then be interesting. The main challenges in
this case are the number of parameters involved and the fact that the covariance matrix
cannot be factorized as a kronecker product. Moreover for v # 0.5 the markovian property
of the process cannot be exploited.

Another interesting extension is to consider the fixed domain asymptotic properties of
the tapered maximum likelihood estimator in bivariate covariance models. This method
of estimation has been proposed as a possible surrogate for the MLE when working with
large data sets, see [32, 33]. Asymptotic properties of this estimator, under fixed domain
asymptotics and in the univariate case, can be found in [34], [24] and [23]. Extensions of
these results to the bivariate case would be interesting. Both topics are to be investigated
in future research.

Appendix
Proof of lemma 3.1.

Let ¥(¢y) = A ® R, where the matrices A and R are defined in (2). First, using
properties of the determinant of the Kroneker product, we have:

log|(¢)| = log(|A" [R|*) = nlog [o705(1 — p*)] +2log|R|.

From lemma 1 in [14], |R| =[]}, (1 — e72*2¢). Then, we have
log |%(¢)] = nlog [o705(1 |+ 22 log (1 —e™2/24) . (39)

On the other hand, since X(¢))"! = A7 ® R™!, we obtain

1 _ P -1
2(1 p?) R 0102(1*P2)R
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1,n
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1 1 1
- T (A e
1

__P (Z;nR_lZLn+Z1T7nR_1Z27n)}.
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Then using Lemma 1 in [14] (Eq. 4.2) we obtain:
1 2 Zk — e 'Zk ; 1)2
T -1 K/ 01—
Zy EW) T Z, = m {Z ? (zk 1 Z e—20A; ) (40)
2 " (z i—e_GAiz i1) (20, — e Pizg,
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Combining (5), (39) and (40), we obtain

2 2 n
L,(v) = nllog(2m) + log(l — p*)] + Z log(o2) + log [02 (1 — e~202)]
k=1 k=1 i=2
1§ L (2 — e z)”
2p - ( 15 — € 1217171) (22,2‘ e Aiz2,i71)
a 0109 <21,12271 + = 1 — e—20A;

Proof of lemma 4.1.
By differentiation of L(6) with respect to 6 we obtain

n —0A; —0A; —0A; —0A;
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1=2

(21— ez ) (200 — e PPizg )20, A G, -G
_ Z (1 — e-2080)2, = G1 — Ga,
1=2

say. Let us first show that Gy = O,,(1). Let fori = 2,...,n, Ag; = Aje % /(1 — e72044),
By symmetry of Z;,, and Z,,, in order to show G; = O,,(1), it is sufficient to show that

Z Agiz1i1(205 — 670&22,2‘71) = Oyp(1). (41)
i=2
We have
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say. Now, one can see from Taylor expansions, and since € © with © compact in (0, c0),
that
Aeﬂ_(ef@oAi _ e*@Ai)

< .
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0€0 neNi=2,....n

Hence
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Let us now consider 7;. We have, for any k£ < ¢
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Now, it is well known from the Markovian property of Z, that »' R™'V, = e’(’oAizg,i,l.
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Now, one can see from Taylor expansions that
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One can see that
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One can show using Taylor expansions that

SB) .— sup  sup }Bgi(e‘%m _ e—GAi)z‘ < o0,
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Hence N
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say. We can thus show that Ry = O,,(1) as for (41). Indeed, the only difference between
(47) and (41) is that Ay, is replaced by Cp;. To show (41) we only used that

sup sup |Ags| < oo.
0€0 neNi=2,....n

We can see from Taylor expansions that

sup  sup |Cy,l < oc.
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Hence, as for (41), we can show that Ry = O,,(1). Hence, from (45) and (46), we have,
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Hence, for k < i (and for k # i by symmetry), the random variables (z;; —e %2
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i21,2;1> and
“0Bizi)

26



and (zj), — e %2, 1) are also independent for j = 1,2 and k # i. Hence, the n — 1
Gaussian vectors { [(Zu — e*(’oAizM_l), (29, — e*(’oAizQ’i_l)] }i:2 _, are mutually indepen-
dent. Thus, the {X,};—2__, are independent random variables. o

We also have
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as is obtained by using Isserlis’ theorem for correlated Gaussian random variables. Furter-

more

Var(Yin) = E(YZ) = [E(Yia)

_1+2p%_< po )2
RN R

= 1.

Hence E(|Y;,,| < +/2) and so
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Hence E(T') = O,(1) and T = 0,,(1). Hence, finally
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