Landau damping for the linearized Vlasov Poisson equation in a weakly collisional regime - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Landau damping for the linearized Vlasov Poisson equation in a weakly collisional regime

Résumé

In this paper, we consider the linearized Vlasov-Poisson equation around an homogeneous Maxwellian equilibrium in a weakly collisional regime: there is a parameter $\eps$ in front of the collision operator which will tend to $0$. Moreover, we study two cases of collision operators, linear Boltzmann and Fokker-Planck. We prove a result of Landau damping for those equations in Sobolev spaces uniformly with respect to the collision parameter $\eps$ as it goes to $0$.
Fichier principal
Vignette du fichier
Landau damping4.pdf (226.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01292023 , version 1 (22-03-2016)
hal-01292023 , version 2 (31-03-2017)

Identifiants

Citer

Isabelle Tristani. Landau damping for the linearized Vlasov Poisson equation in a weakly collisional regime . 2016. ⟨hal-01292023v1⟩
485 Consultations
590 Téléchargements

Altmetric

Partager

More