Qualitative properties of generalized principal eigenvalues for superquadratic viscous Hamilton-Jacobi equations - Archive ouverte HAL
Article Dans Une Revue Nonlinear Differential Equations and Applications Année : 2016

Qualitative properties of generalized principal eigenvalues for superquadratic viscous Hamilton-Jacobi equations

Résumé

This paper is concerned with the ergodic problem for superquadratic viscous Hamilton-Jacobi equations with exponent m > 2. We prove that the generalized principal eigenvalue of the equation converges to a constant as m → ∞, and that the limit coincides with the generalized principal eigenvalue of an ergodic problem with gradient constraint. We also investigate some qualitative properties of the generalized principal eigenvalue with respect to a perturbation of the potential function. It turns out that different situations take place according to m = 2, 2 < m < ∞, and the limiting case m = ∞.
Fichier principal
Vignette du fichier
16_03_20_submit.pdf (165.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01291015 , version 1 (20-03-2016)

Identifiants

Citer

Emmanuel Chasseigne, Naoyuki Ichihara. Qualitative properties of generalized principal eigenvalues for superquadratic viscous Hamilton-Jacobi equations. Nonlinear Differential Equations and Applications, 2016, 23, pp.1-17. ⟨hal-01291015⟩
257 Consultations
97 Téléchargements

Altmetric

Partager

More