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Qualitative properties of generalized principal

eigenvalues for superquadratic viscous

Hamilton-Jacobi equations

Emmanuel Chasseigne∗ and Naoyuki Ichihara†

Abstract

This paper is concerned with the ergodic problem for superquadratic viscous

Hamilton-Jacobi equations with exponent m > 2. We prove that the generalized

principal eigenvalue of the equation converges to a constant as m → ∞, and that

the limit coincides with the generalized principal eigenvalue of an ergodic problem

with gradient constraint. We also investigate some qualitative properties of the

generalized principal eigenvalue with respect to a perturbation of the potential

function. It turns out that different situations take place according to m = 2,

2 < m < ∞, and the limiting case m = ∞.

1 Introduction

In this paper we study the ergodic problem for the following superquadratic viscous

Hamilton-Jacobi equation with exponent m > 2:

λ−∆u+
1

m
|Du|m − f = 0 in RN , (1.1)

where Du and ∆u denote the gradient and the Laplacian of u : RN → R, respectively,

and f : RN → R is assumed to be continuous on RN and to vanish as |x| → ∞. The

unknown of (1.1) is the pair of a real constant λ and a function u. We denote by λm

the generalized principal eigenvalue of (1.1) which is defined by

λm := sup{λ ∈ R | (1.1) has a continuous viscosity subsolution u }. (1.2)
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Here and in what follows, unless otherwise specified, every solution (subsolution, su-

persolution) u is understood in the viscosity sense. We refer, for instance, to [3, 9] for

the definition and fundamental properties of viscosity solutions.

The objective of this paper consists of two parts, which we present as A and B

below.

A. Convergence as m → ∞. We study the convergence of λm as m → ∞. More

precisely, let us consider the following ergodic problem with gradient constraint:

max
{

λ−∆u− f, |Du| − 1
}

= 0 in RN . (1.3)

Let λ∞ denote the generalized principal eigenvalue of (1.3) defined, similarly as (1.2),

by the supremum of λ ∈ R such that (1.3) has a continuous viscosity subsolution u.

Then we prove that λm converges to λ∞ as m → ∞. In this sense, ergodic problem

(1.3) can be regarded as the extreme case of (1.1) where m = ∞. Note that (1.3)

has been studied by [4, 5] for functions f that are smooth, convex, and of superlinear

growth as |x| → ∞. In these papers, λ∞ is derived from the limit of δvδ(0) as δ → 0,

where vδ is the solution to the following equation:

max
{

δvδ −∆vδ − f, |Dvδ| − 1
}

= 0 in RN .

The present paper provides another characterization of λ∞ in terms of λm under a

different type of assumptions on f .

B. Qualitative properties. We introduce a real parameter β and consider (1.1)

and (1.3) with βf in place of f . We are interested in qualitative properties of the

generalized principal eigenvalue λm = λm,β with respect to β. In order to illustrate

our main results briefly, we assume, for a moment, that f is nonnegative in RN with

compact support (this can be relaxed, see Section 4). Then it turns out that there

exists a critical value βc ≤ 0 such that λm,β = 0 for all β ≥ βc, while λm,β < 0 for all

β < βc. Notice here that the value of βc, especially, its negativity depends sensitively

on m and N . More specifically, the following three situations occur according to the

choice of m:

(a) if m = 2, then βc = 0 for N = 1, 2 and βc < 0 for all N ≥ 3;

(b) if 2 < m <∞, then βc = 0 for N = 1 and βc < 0 for all N ≥ 2;

(c) if m = ∞, then βc < 0 for all N ≥ 1.

The quadratic case (a) has been proved in [7, Theorem 2.5], and the second claim in

(b) (i.e., the case where 2 < m <∞ and N ≥ 2) is also suggested by [8, Theorem 2.4]

in a slightly different context. The essential novelty of this paper, compared with [7, 8],
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lies in the simultaneous derivation of (b) and (c) in combination with the convergence

result obtained in part A. In particular, claim (c) for N ≥ 2 can be derived by passing

to the limit of (b) as m→ ∞. To the best of our knowledge, such a qualitative analysis

of λm,β, especially for m = ∞, seems to be new. We remark that we consider not only

nonnegative functions f but also sign-changing ones, which lead to a more complex

picture where two critical parameters β− ≤ β+ will play the role of the above βc. For

instance, if N ≥ 2 and 2 < m ≤ ∞, then there exist β− < 0 < β+ such that λm,β = 0

for any β ∈ [β−, β+], while λm,β < 0 outside this interval. See Section 4 for details.

Our study of critical value βc is strongly motivated by the stochastic control inter-

pretation of λm,β. Loosely speaking, if 2 ≤ m <∞, then the principal eigenvalue λm,β

coincides with the optimal value of the following ergodic stochastic control problem:

Minimize lim sup
T→∞

1

T
E

[
∫ T

0

{ 1

m∗
|ξt|m

∗

+ βf(Xξ
t )
}

dt

]

,

subject to Xξ
t =

√
2Wt +

∫ t

0

ξsds, t ≥ 0,

(1.4)

where m∗ := m/(m − 1), and W = (Wt) and ξ = (ξt) denote, respectively, an N -

dimensional standard Brownian motion and an (Ft)-adapted control process defined

on some filtered probability space (Ω,F , P ; (Ft)). If f ≥ 0 in RN and β ≥ 0, then this

is nothing but a minimization problem of the total cost (1/m∗)|ξt|m∗

+ βf(Xξ
t ). The

situation becomes delicate as far as β < 0. Intuitively, the controller of the optimization

problem (1.4) falls into a trade-off situation between minimizing the cost (1/m∗)|ξt|m∗

and maximizing the reward |β|f(Xξ
t ). The dominant term depends on the magnitude

of |β|, and the critical value βc is determined as the threshold at which the controller

changes his/her optimal choice: either “minimize cost” or “maximize reward”. In

particular, the negativity of βc implies the existence of such “phase transition”, which

we intend to characterize in the present paper.

As to the limiting case where m = ∞, the value λ∞,β is related to the following

singular ergodic stochastic control problem:

Minimize lim sup
T→∞

1

T
E

[

|η|T +

∫ T

0

βf(Xη
t ) dt

]

,

subject to Xη
t =

√
2Wt + ηt, t ≥ 0,

where η = (ηt) stands for an (Ft)-adapted control process of bounded variations, and

|η|T denotes its bounded variation norm. We refer, for instance, to [12] and references

therein for more information on singular ergodic stochastic control and associated PDEs

with gradient constraint. See also [6, 7, 8] for the stochastic control interpretation of

λm,β for 2 ≤ m < ∞. In this paper, we focus only on the PDE aspect and do not

discuss its probabilistic counterpart.
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The organization of the paper is as follows. In the next section, we discuss the

solvability of (1.1). Specifically, we prove that, for any λ ≤ λm, there exists a viscosity

solution u of (1.1). In Section 3, we prove the convergence of λm as m → ∞. Section

4 is devoted to qualitative properties of λm,β with respect to β.

2 Solvability of (1.1)

We collect some notation used throughout the paper. For any R > 0, BR stands for

the open ball of radius R, centered at the origin. For given k ∈ N∪{0}, γ ∈ (0, 1], and

p ∈ [1,∞], let Ck,γ(RN) and W k,p(RN) denote local Hölder (or Lipschitz if k = 0, γ =

1) spaces and Sobolev spaces, respectively. Recall that the Hölder/Lipschitz norm over

BR of functions in Ck,γ(RN) depends on R, in general. We also denote by C∞
c (RN)

the set of smooth functions with compact support. Finally, let C0(R
N) stand for the

totality of continuous functions f ∈ C(RN) such that f(x) → 0 as |x| → ∞.

Let m > 2 and consider the ergodic problem

λ−∆u+
1

m
|Du|m = f in RN , u(0) = 0, (2.1)

where the constraint u(0) = 0 is imposed to avoid the ambiguity of additive constant

with respect to u. Throughout this paper, we assume without mentioning that f

satisfies the following:

(A1) f ∈ C0(R
N).

To begin with, we recall some regularity estimates that will be needed repeatedly.

Theorem 2.1. Let α := (m− 2)/(m− 1).

(i) For any R > 0, there exists a constant MR > 0 such that

|u(x)− u(y)| ≤MR|x− y|α, x, y ∈ BR,

for any locally bounded upper semicontinuous viscosity subsolution u of (2.1), where

MR depends on maxBR
|f − λ|, but is independent of any large m > 2.

(ii) Suppose that f ∈ C0,1(RN). Then, for any R > 0, there exists a constant KR > 0

such that

|u(x)− u(y)| ≤ KR|x− y|, x, y ∈ BR,

for any continuous viscosity solution u of (2.1), where KR may depend on the sup-norm

and the Lipschitz norm of f −λ over a larger ball, say BR+1, but is independent of any

large m > 2.
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Proof. This theorem is a direct consequence of [2, Theorems 1.1 and 3.1]. Notice here

that the gradient term of the equation in [2] is not (1/m)|Du|m but |Du|p with p > 2.

However, by a careful reading of their proof, one can see thatMR and KR can be taken

uniformly with respect to any large m > 2.

It is obvious from Theorem 2.1 that any locally bounded upper semicontinuous

viscosity subsolution of (2.1) belongs to C0,α(RN) with α = (m− 2)/(m− 1). Taking

this fact into account, one can redefine the generalized principal eigenvalue of (2.1) by

λm := sup{λ ∈ R | (2.1) has a viscosity subsolution u ∈ C0,α(RN)}. (2.2)

Note here that λm 6= −∞. Indeed, (λ, u) = (infRN f, 0) is a viscosity subsolution of

(2.1), so that λm ≥ infRN f > −∞.

We first observe a few properties of λm that can be verified by its very definition.

In what follows, we often use the notation λm(f) to emphasize the dependence of λm

on the function f .

Proposition 2.2. Let f, g ∈ C0(R
N). We denote by λm(f), λm(g) the associated

generalized principal eigenvalues of (2.1), respectively. Then the following (i)-(iii) hold.

(i) f ≤ g in RN implies λm(f) ≤ λm(g).

(ii) (1− δ)λm(f) + δλm(g) ≤ λm((1− δ)f + δg) for any δ ∈ (0, 1).

(iii) λm(f + c) = λm(f) + c for any c ∈ R.

Proof. We first show (i). Let u ∈ C0,α(RN) be a viscosity subsolution of (2.1) with f .

Then it is also a viscosity subsolution of (2.1) with g in place of f . Hence, λm(f) ≤
λm(g) by definition. One can also verify (ii) similarly. The validity of (iii) is obvious

from the definition of λm. Hence, we have completed the proof.

The following result implies that, if f ∈ C0,1(RN), then “viscosity subsolution” in

the definition of λm can be replaced by “classical subsolution”.

Proposition 2.3. Suppose that f ∈ C0,1(RN). Then, for any λ < λm, there exists a

classical subsolution u ∈ C∞(RN) of (2.1).

Proof. Fix any λ < λm and construct a smooth subsolution u of (2.1). To this end,

we follow the ingenious idea due to [1, 10]. Set fε(x) := min|e|<ε f(x + e) for ε > 0.

Then, fε ∈ C0,1(RN) ∩ C0(R
N), fε ≤ f in RN , and {fε} converges to f uniformly in

RN as ε→ 0. Let λ
(ε)
m be the generalized principal eigenvalue of (2.1) with fε in place

of f . Then, in view of Proposition 2.2 and by choosing ε > 0 sufficiently small, we

may assume that λ < λ
(ε)
m ≤ λm. In particular, for the above λ, there exists a viscosity

subsolution u(ε) ∈ C0,α(RN) of (2.1) with fε in place of f . Since fε( · − e) ≤ f in RN

for any |e| < ε, one can also see that u(ε)( · − e) is a viscosity subsolution of (2.1) for

any |e| < ε.
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Now, let {ρδ}δ>0 ⊂ C∞
c (RN) be a family of mollifier functions, i.e., ρδ ≥ 0 in RN ,

∫

RN ρδ(x) dx = 1, and supp ρδ ⊂ Bδ for all δ > 0. Set u
(ε)
δ (x) := (u(ε) ∗ ρδ)(x) for

δ < ε, where ∗ stands for the usual convolution. Then, by noting the convexity of

p 7→ (1/m)|p|m, one can see, similarly as in the proof of [1, Lemma 2.7], that u := u
(ε)
δ

is a smooth viscosity subsolution of (2.1). Since a smooth viscosity subsolution is a

classical subsolution, we have completed the proof.

We next verify that λm is nonpositive.

Proposition 2.4. One has λm ≤ 0. In particular, λm is finite.

Proof. In view of Proposition 2.2 (i), it suffices to consider the case where f ∈ C0,1(RN).

Fix any λ < λm, and let u ∈ C∞(RN) be a classical subsolution of (2.1). Existence

of such u is guaranteed by virtue of Proposition 2.3. Then, for any nonnegative test

function η ∈ C∞
c (RN) such that

∫

RN η(x)
m∗

dx = 1, where m∗ := m/(m− 1), we have

λ

∫

RN

ηm
∗

dx+

∫

RN

Du ·D(ηm
∗

) dx+
1

m

∫

RN

|Du|mηm∗

dx ≤
∫

RN

fηm
∗

dx.

Noting D(ηm
∗

) = ηm
∗/mDη and

Du ·D(ηm
∗

) ≤ 1

m
|Du|mηm∗

+
1

m∗
|Dη|m∗

,

we see that, for any ε > 0,

λ = λ

∫

RN

ηm
∗

dx ≤ ε+

∫

RN

(f − ε)+η
m∗

dx+
1

m∗

∫

RN

|Dη|m∗

dx,

where (f − ε)+ denotes the positive part of f − ε. Furthermore, if we define ηδ(x) :=

δN/m∗

η(δx) for δ > 0, which still satisfies
∫

RN ηδ(x)
m∗

dx = 1 for any δ > 0, then

plugging this into the above η, we have

λ ≤ ε+

∫

RN

(f(x)− ε)+ηδ(x)
m∗

dx+
δm

∗

m∗

∫

RN

|Dη(x)|m∗

dx. (2.3)

Sending δ → 0, we obtain λ ≤ ε. Since ε > 0 and λ < λm are arbitrary, we conclude

that λm ≤ 0. Hence, we have completed the proof.

The following proposition states a stability of λm(f) with respect to f .

Proposition 2.5. Let f, g ∈ C0(R
N). Then |λm(f) − λm(g)| ≤ maxRN |f − g|. In

particular, if {fn} ⊂ C0(R
N) converges as n → ∞ to some f ∈ C0(R

N) uniformly

in RN , then λm(fn) converges to λm(f) as n → ∞. Moreover, if {un} is a family

of viscosity solutions of (2.1) with f = fn and λ = λm(fn), then, along a suitable

subsequence, {un} converges as n→ ∞ to a viscosity solution u of (2.1) with λ = λm(f)

locally uniformly in RN .
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Proof. Since f ≤ g+maxRN (f − g)+ in RN , we see, in view of Proposition 2.2 (i) and

(iii), that λm(f)− λm(g) ≤ maxRN (f − g)+. Changing the role of f and g, we obtain

the first claim. The second claim is obvious from the first one. In order to verify the

last claim, we observe from Theorem 2.1 that {un} pre-compact in C(RN). Applying

Ascoli-Arzela theorem, we see that {un} converges, along a suitable subsequence, to a

function u ∈ C0,α(RN) locally uniformly in RN . By the stability property of viscosity

solutions, we conclude that u is a viscosity solution of (2.1) with λ = λm(f). Hence,

we have completed the proof.

We now state the main result of this section.

Theorem 2.6. For any λ ≤ λm, there exists a viscosity solution u ∈ C0,α(RN) of

(2.1). Moreover, if f ∈ C0,1(RN), then for any λ ≤ λm, there exists a classical solution

u ∈ C2(RN) of (2.1).

Proof. We first prove the latter claim. Let f ∈ C0,1(RN) and fix any λ < λm. Then,

by virtue of Proposition 2.3, there exists a classical subsolution u− ∈ C∞(RN) of (2.1).

Fix any R > 0 and consider the Dirichlet problem

λ−∆u+
1

m
|Du|m − f = 0 in BR, u = u− on ∂BR, (2.4)

where ∂BR := {x ∈ RN | |x| = R}. Then it is known (e.g. [11, Théorème I.1]) that

there exists a unique classical solution uR ∈ C2,γ(BR) of (2.4) for some γ ∈ (0, 1). By

virtue of Theorem 2.1 together with the Schauder estimate, we see that {uR−uR(0)}R>0

is pre-compact in C2(RN). In particular, letting R → ∞ along a suitable subsequence

{Rj} if necessary, we see that {uRj
} and their first and second derivatives converge

as j → ∞ to a function u ∈ C2(RN) and its corresponding derivatives, respectively,

locally uniformly in RN , and that u is a classical solution of (2.1). In order to see that

(2.1) with λ = λm has a classical solution, we choose any sequence {λ(n)} such that

λ(n) → λm as n→ ∞, and let u(n) denote the associated classical solution to (2.1) with

λ = λ(n). Then one can see, similarly as above, that {u(n) − u(n)(0)} is pre-compact in

C2(RN). Passing to the limit as n→ ∞ along a suitable subsequence if necessary, we

conclude that (2.1) with λ = λm has a classical solution.

We now prove the former claim. Fix any f ∈ C0(R
N) and choose a sequence

{fn} ⊂ C∞(RN)∩C0(R
N) which converges as n→ ∞ to f uniformly in RN . Let λ(n)

be the generalized principal eigenvalue of (2.1) with fn in place of f . Then, in view

of Proposition 2.5, we observe that λ(n) → λm as n → ∞. Now, fix any λ < λm. We

may assume without loss of generality that λ < λ(n) for any n ≥ 1. For each n ≥ 1,

let u(n) ∈ C2(RN) denote a classical solution of (2.1) with fn in place of f . Then, by

Theorem 2.1 and the stability of viscosity solutions, we conclude that, along a suitable

subsequence, {u(n)} converges as n→ ∞ to a viscosity solution u ∈ C0,α(RN) of (2.1)
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locally uniformly inRN . We can also construct a viscosity solution of (2.1) with λ = λm

similarly as in the previous case. Hence, we have completed the proof.

Theorem 2.6 implies that the following representation formula for λm holds:

λm = max{λ ∈ R | (2.1) has a viscosity solution u ∈ C0,α(RN)}.

Furthermore, if f ∈ C0,1(RN), then

λm = max{λ ∈ R | (2.1) has a classical solution u ∈ C2(RN)}.

3 Convergence as m→ ∞
This section is devoted to the convergence of λm as m→ ∞. To be precise, we rewrite

the limiting equation

max
{

λ−∆u− f, |Du| − 1
}

= 0 in RN , u(0) = 0, (3.1)

and redefine the generalized principal eigenvalue of (3.1) by

λ∞ := sup{λ ∈ R | (3.1) has a viscosity subsolution u ∈ C0,1(RN)}. (3.2)

The following result is crucial to our convergence result.

Proposition 3.1. Let {mk} ⊂ R be an increasing sequence such that mk → ∞ as

k → ∞. Let (λmk
, uk) be a solution of (2.1) with m = mk for each k. Suppose that

λk converges to some λ ∈ R as k → ∞. Then, up to a subsequence, {uk} converges

as k → ∞ to a function u ∈ C0,1(RN) locally uniformly in RN . Moreover, (λ, u) is a

solution of (3.1).

Proof. In view of Theorem 2.1 (i), we see that there exist a subsequence of {uk}, which
we denote by {uk} again, and a function u ∈ C(RN) with u(0) = 0 such that uk → u

as k → ∞ locally uniformly in RN . Note that u ∈ C0,1(RN) since the constant MR in

Theorem 2.1 (i) does not depend on any large m > 2.

We now verify that u is a viscosity solution of (3.1). We first prove the subsolution

property. Fix any x0 ∈ RN and let φ ∈ C2(RN) be any function such that maxRN (u−
φ) = (u− φ)(x0). As is standard, one can assume that the maximum is strict, so that

there exists a sequence {xk} ⊂ RN such that uk − φ attains its local maximum at xk

and xk → x0 as k → ∞. Then, by the subsolution property of uk, we see that

λmk
−∆φ(xk) +

1

mk
|Dφ(xk)|mk − f(xk) ≤ 0. (3.3)

8



We now suppose that |Dφ(x0)| > 1. Then there exists an η > 0 such that |Dφ(xk)| ≥
1 + η for all sufficiently large k. In particular, we have

1

mk
(1 + η)mk ≤ −λmk

+∆φ(xk) + f(xk).

Sending k → ∞, we get a contradiction since the right-hand side remains bounded,

whereas the left-hand side goes to infinity as k → ∞. Hence, we have |Dφ(x0)| ≤ 1.

Furthermore, letting k → ∞ in (3.3), we conclude that λ−∆φ(x0)− f(x0) ≤ 0, which

implies that u is a viscosity subsolution of (3.1).

We next prove the supersolution property. Fix any x0 ∈ RN and let ψ ∈ C2(RN)

be such that minRN (u − ψ) = (u − ψ)(x0). If |Dψ(x0)| ≥ 1, then there is nothing to

prove, so we assume that |Dψ(x0)| < 1. In particular, there exists some η > 0 such

that |Dψ(xk)| ≤ 1− η for all sufficiently large k. Furthermore, there exists a sequence

{xk} ⊂ RN such that uk − ψ attains its local minimum at xk and xk → x0 as k → ∞.

Then, by the supersolution property of uk, we have

λmk
−∆ψ(xk) +

1

mk

|Dψ(xk)|mk − f(xk) ≥ 0.

Letting k → ∞ in the above inequality, we obtain λ−∆ψ(x0)− f(x0) ≥ 0. Hence, we

conclude that u is a viscosity supersolution of (3.1).

We are now in position to state the main result of this section.

Theorem 3.2. Let λm and λ∞ be the generalized principal eigenvalues of (2.1) and

(3.1), respectively. Then, λm converges to λ∞ as m → ∞. Moreover, equation (3.1)

with λ = λ∞ has a viscosity solution u ∈ C0,1(RN).

Proof. Set λ := lim supm→∞ λm. Note that λ ≤ 0 in view of Proposition 2.4. Let

(λmk
, umk

) be a sequence of solutions to (2.1) with m = mk such that λmk
→ λ as

k → ∞. Then, by taking a subsequence if necessary, we see from Proposition 3.1 that

{umk
} converges to a viscosity solution u ∈ C0,1(RN) of (3.1) locally uniformly in RN .

In particular, λ ≤ λ∞.

To prove the reverse inequality, we set λ := lim infm→∞ λm. Fix any ε > 0 and let

u ∈ C0,1(RN) be a viscosity subsolution of (3.1) with λ = λ∞ − ε. Then, noting that

|Du| ≤ 1 in RN in the viscosity sense, we see that, for any m > 2, u is a viscosity

subsolution of

λ∞ − ε− 1

m
−∆u+

1

m
|Du|m − f ≤ 0 in RN .

This implies λ∞ − ε − 1/m ≤ λm for any m > 2, so that λ∞ − ε ≤ λ. Since ε > 0 is

arbitrary, we obtain λ∞ ≤ λ ≤ λ ≤ λ∞. Hence, we have completed the proof.

The next result states that Proposition 2.3 remains valid for m = ∞.
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Proposition 3.3. Suppose that f ∈ C0,1(RN). Then, for any λ < λ∞, there exists a

classical subsolution u ∈ C∞(RN) of (3.1). In particular,

λ∞ = sup{λ ∈ R | (3.1) has a classical subsolution u ∈ C∞(RN)}.

Proof. Fix any λ < λ∞, and let {ρδ}δ>0 ⊂ C∞
c (RN) be such that ρδ ≥ 0 in RN ,

∫

RN ρδ(x)dx = 1, and supp ρδ ⊂ Bδ for all δ > 0. Let {λmk
} be a sequence of generalized

principal eigenvalues of (2.1) with m = mk such that λmk
→ λ∞ as k → ∞. Such a

sequence exists by virtue of Theorem 3.2. In what follows, we assume that λ < λmk

for all k ≥ 1. For each k ≥ 1, let u(k) ∈ C2(RN) be a classical solution of (2.1) with

m = mk (and the common λ). Taking a subsequence if necessary, one may also assume

that {u(k)} converges as k → ∞ to a viscosity solution u ∈ C0,1(RN) of (3.1) locally

uniformly in RN .

Now we set u
(k)
δ := u(k) ∗ ρδ, uδ := u ∗ ρδ, and fδ := f ∗ ρδ, where ∗ stands for the

usual convolution. We choose δ > 0 so small that sup
RN |fδ − f | < λmk

− λ for all

k ≥ 1. Then, since u(k) is a classical solution of (2.1) with m = mk, we see that u
(k)
δ

enjoys the inequality

λ−∆u
(k)
δ +

1

mk
|Du(k)δ |mk − f ≤ 0 in RN

for all k ≥ 1 and any sufficiently small δ > 0. This implies that u
(k)
δ is also a classical

subsolution of

λ−∆u
(k)
δ − f ≤ 0 in RN .

Letting k → ∞ and noting the stability of viscosity solutions, we conclude that uδ

is a smooth viscosity subsolution, and therefore, a classical subsolution of the same

equation. On the other hand, since |u| ≤ 1 a.e. in RN , which can be verified as in the

proof of Proposition 3.1, we see that |uδ| ≤ 1 in RN . Hence, uδ enjoys (3.1) at every

point x ∈ RN , and we have completed the proof.

Remark 3.4. The first claim of Theorem 2.6 remains true for m = ∞. Namely, for

any λ ≤ λ∞, there exists a viscosity solution u ∈ C0,1(RN) of (3.1). To see this, fix

any λ < λ∞ and choose an m0 so large that λm > λ for any m > m0. Let um, for

m > m0, be a viscosity solution of (2.1). Then, by Proposition 3.1, we conclude that,

along a subsequence, {um} converges to a viscosity solution u ∈ C0,1(RN) of (3.1). The

existence of a viscosity solution u to (3.1) with λ = λ∞ has been proved in Theorem

3.2. Hence, the first claim of Theorem 2.6 is also valid for m = ∞. We do not know if

the second claim remains true for m = ∞.
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4 Qualitative properties

In this section, we introduce real parameter β and consider the ergodic problem for

m > 2:

λ−∆u+
1

m
|Du|m − βf = 0 in RN , u(0) = 0, (4.1)

and its limiting equation as m→ ∞:

max{λ−∆u− βf, |Du| − 1} = 0 in RN , u(0) = 0. (4.2)

In the rest of this paper, we impose the following assumption on f in addition to (A1):

(A2) f 6≡ 0 and |f(x)| ≤ C0〈x〉−m∗

in RN for some C0 > 0, where 〈x〉 := (1 + |x|2)1/2
and m∗ := m/(m− 1) with the convention that m∗ := 1 for m = ∞.

Let λm,β and λ∞,β be the generalized principal eigenvalues of (4.1) and (4.2), re-

spectively. In view of Proposition 2.4 and Theorem 3.2, we observe that λm,β ≤ 0 for

any β ∈ R and 2 < m ≤ ∞. It is also easy to see that λm,0 = 0 for any 2 < m ≤ ∞.

Furthermore, we have the following.

Proposition 4.1. Let 2 < m ≤ ∞. If f− 6≡ 0, then λm,β → −∞ as β → ∞, and if

f− ≡ 0, then λm,β = 0 for any β > 0. Symmetrically, if f+ 6≡ 0, then λm,β → −∞ as

β → −∞, and if f+ ≡ 0, then λm,β = 0 for any β < 0.

Proof. We first consider the case where 2 < m < ∞. In view of Proposition 2.5, we

may assume that f ∈ C0,1(RN). Suppose that f− 6≡ 0, and choose any η ∈ C∞
c (RN)

such that η ≥ 0 in RN ,
∫

RN η(x)
m∗

dx = 1, and supp η ⊂ supp f−. Then, taking a

classical solution u ∈ C2(RN) of (4.1) with λ = λm,β, multiplying both sides of (4.1)

by η, and applying integration by parts, we see as in the proof of Proposition 2.4 that

λm,β ≤ −β
∫

RN

f−(x)η(x)
m∗

dx+
1

m∗

∫

RN

|Dη(x)|m∗

dx. (4.3)

Since the integral of f−η
m∗

over RN is strictly positive, we conclude that λm,β → −∞
as β → ∞. We now take the limit as m→ ∞ in (4.3). Then, since m∗ → 1 as m→ ∞,

we see from Theorem 3.2 that the claim is also valid for m = ∞.

We now suppose that f− ≡ 0. Then, for any β > 0, the pair (λ, u) = (0, 0) is a

subsolution of (4.1) and (4.2). This implies that λm,β = 0 for any 2 < m ≤ ∞ and

β > 0. By choosing −f and −β in place of f and β, respectively, we see that the latter

claim of this proposition is also valid. Hence, we have completed the proof.

From Propositions 2.2 (ii), 2.4, and 4.1, for each 2 < m ≤ ∞, one can define β−, β+

by

β+ := max{β ∈ R | λm,β = 0}, β− := min{β ∈ R | λm,β = 0}.

11



Obviously, −∞ ≤ β− ≤ 0 ≤ β+ ≤ ∞, and β+ (resp. β−) is finite if and only if f− 6≡ 0

(resp. f+ 6≡ 0). Moreover, since f 6≡ 0, either β+ or β− is finite. As is mentioned in

the introduction, we wish to know whether 0 < |β±| (< ∞). The main result of this

section can be stated as follows.

Theorem 4.2. Let β+ be defined as above, and let f− 6≡ 0.

(i) Suppose that N ≥ 2 and 2 < m ≤ ∞. Then β+ > 0.

(ii) Suppose that N = 1 and 2 < m <∞. Then β+ = 0.

(iii) Suppose that N = 1 and m = ∞. Then β+ > 0 provided f− ∈ L1(R).

Changing (β, f) into (−β,−f), one has the following symmetrical result as a corol-

lary of Theorem 4.2.

Corollary 4.3. Let β− be defined as above, and let f+ 6≡ 0.

(i) Suppose that N ≥ 2 and 2 < m ≤ ∞. Then β− < 0.

(ii) Suppose that N = 1 and 2 < m <∞. Then β− = 0.

(iii) Suppose that N = 1 and m = ∞. Then β− < 0 provided f+ ∈ L1(R).

Remark 4.4. If N ≥ 2 and f is sign-changing, then β− < 0 < β+ for any 2 < m ≤ ∞.

From the ergodic stochastic control point of view, this implies that there exist two

different critical points β+ and β− at which the controller changes his/her optimal

strategy. We remark that, if f is nonnegative or nonpositive in RN , then there is only

one such critical point.

In the rest of this section, we prove (i)-(iii) of Theorem 4.2 one by one. The key to

the proof of claim (i) is the following estimate.

Proposition 4.5. Let N ≥ 2 and 2 < m <∞. Set

β0 :=
(N −m∗)m

∗

m∗C0
> 0,

where m∗ := m/(m − 1) and C0 > 0 is the constant in (A2). Then, for any |β| ≤ β0,

there exists a subsolution u ∈ C∞(RN) of (4.1) with λ = 0.

Proof. We define u : RN → R by u(x) := (K/α)〈x〉α, where α = (m− 2)/(m− 1) and

K > 0 is some constant that will be specified later. Then, by direct computations, we

see that Du = K〈x〉−m∗

x and ∆u = KN〈x〉−m∗ −Km∗〈x〉−m∗−2|x|2. Thus,

−∆u +
1

m
|Du|m = 〈x〉−m∗

{

−KN +Km∗|x|2〈x〉−2
}

+
Km

m
|x|m〈x〉−mm∗

= 〈x〉−m∗

{

−KN +Km∗|x|2〈x〉−2 +
Km

m
|x|m〈x〉−m

}

≤ 〈x〉−m∗

{

− (N −m∗)K +
Km

m

}

.
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Since the functionK 7→ f(K) := (Km/m)−(N−m∗)K attains its minimum −(1/m∗)(N−
m∗)m

∗

at K = (N − m∗)1/(m−1) =: Km, we choose K = Km in the definition of u to

obtain

−∆u +
1

m
|Du|m + βf ≤ 〈x〉−m∗

{

|β|C0 −
1

m∗
(N −m∗)m

∗

}

in RN .

This implies that u is a subsolution of (2.1) with λ = 0 provided |β| ≤ β0. Hence, we

have completed the proof.

As a corollary of this proposition, one can prove claim (i) of Theorem 4.2.

Proof of Theorem 4.2 (i). Let β0 be the constant taken from Proposition 4.5. Then, it

is obvious that β+ ≥ β0 > 0 for any 2 < m <∞. Moreover, since m∗ → 1 as m→ ∞,

we see that β+ ≥ β0 ≥ (N − 1)/(2C0) > 0 for any large m. Hence, letting m → ∞
and noting that λm,β converges to λ∞,β as m → ∞ for any β ∈ R, we conclude that

λ∞,β = 0 for any β ≤ (N − 1)/(2C0). This yields that β+ > 0 for N ≥ 2 and m = ∞.

Hence, we have completed the proof.

Remark 4.6. In the case where N ≥ 2 and 2 < m < ∞, the positivity β+ > 0 has

been observed in [8, Proposition 2.4] when f ∈ C0,1(RN). The new ingredient here is

that we have an explicit lower bound of β+, uniform in m, which leads to the positivity

of β+ not only for 2 < m <∞ but also for m = ∞. Recall that β+ = 0 for N = m = 2

(see [7]). This exhibits a striking contrast between quadratic and superquadratic cases.

In what follows, we concentrate on the case where N = 1, in which case the ergodic

problem (4.1) takes the form

λ− u′′ +
1

m
|u′|m − βf = 0 in R, u(0) = 0. (4.4)

We first prove claim (ii) of Theorem 4.2.

Proof of Theorem 4.2 (ii). Wemay assume without loss of generality that f ∈ C0,1(RN).

We prove that λm,β < 0 for any β > 0. We argue by contradiction assuming that

λm,β = 0 for some β > 0. Let C > 0 be such that Cm = maxRN (βf)−, and let

u ∈ C2(R) be a classical solution of (4.4) with λ = 0. Then, we see that

−u′′ + 1

m
|u′|m = βf ≥ −Cm in R.

By changing the variable such as s = u′(x)/C, we have

Cm−1x ≥
∫ u′(x)/C

u′(0)/C

m

|s|m +m
ds ≥ −

∫

R

m

|s|m +m
ds > −∞ for all x ∈ R.

Sending x→ −∞, we get a contradiction. Hence, λm,β < 0 for all β > 0.
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We finally prove claim (iii) of Theorem 4.2. Let N = 1 and m = ∞. In this case,

(4.2) can be written as

max{λ− u′′ − βf, |u′| − 1} = 0 in R, u(0) = 0. (4.5)

Proposition 4.7. Let N = 1 and m = ∞. Suppose that f− 6≡ 0, and set

L :=

∫

R

f−(u)du, K := sup
{

∫ y

x

−f(u)du
∣

∣

∣
x, y ∈ R, x < y

}

.

Then 2/L ≤ β+ ≤ 2/K, where 2/L := 0 for L = ∞ and 2/K := 0 for K = ∞.

Proof. We first show that 2/L ≤ β+. We may assume L <∞, otherwise the inequality

is obvious. Notice here that L > 0 by assumption. We set β0 := 2/L and construct a

classical subsolution u ∈ C2(R) of (4.5) with λ = 0 and β = β0. Let us consider the

linear equation

−u′′ + β0f− = 0 in R, u(0) = 0. (4.6)

Then, for any C ∈ R, the function u ∈ C2(R) defined by

u(x) = β0

∫ x

0

F (y)dy + Cx, F (y) :=

∫ y

0

f−(u)du, (4.7)

is a classical solution to (4.6). We now choose

C :=
1

L

(
∫ 0

−∞

f−(u)du−
∫ ∞

0

f−(u)du

)

.

Then, noting that u′(x) = β0F (x) + C for all x ∈ R, we have

u′(x) ≤ 2

L

∫ ∞

0

f−(u)du+ C = 1, u′(x) ≥ − 2

L

∫ 0

−∞

f−(u)du+ C = −1

for all x ∈ R. Hence, u with the above C is a subsolution of (4.5) with λ = 0 and

β = β0, which implies that β+ ≥ 2/L.

We next show that β+ ≤ 2/K. Recall that K > 0 by assumption. We argue by

contradiction assuming that β+ > 2/K. Fix any β such that 2/K < β < β+. Then,

λ∞,β = 0 by the definition of β+. Fix an arbitrary δ > 0. Then, in view of Proposition

3.3, there exists a classical subsolution u ∈ C∞(R) of (4.5) with λ = −δ. In particular,

we have

−δ − u′′ − βf ≤ 0, |u′| ≤ 1 in R.

This yields that, for any x, y ∈ R with x < y,

β

∫ y

x

−f(s)ds ≤
∫ y

x

(u′′(s) + δ)ds = u′(y)− u′(x) + δ(y − x) ≤ 2 + δ(y − x).

Letting δ → 0 and taking the supremum over all x, y ∈ R such that x < y, we obtain

βK ≤ 2, which is a contradiction. Hence, we have completed the proof.
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Claim (iii) of Theorem 4.2 is a direct consequence of the above proposition.

Remark 4.8. Suppose that f+ ≡ 0, that is, f ≤ 0 in R. Then L = K =
∫

R
|f(u)|du,

so that β+ = 2/
∫

R
|f(u)|du. This implies that β+ > 0 if and only if f ∈ L1(R).

Remark 4.9. As far as the uniqueness for u, up to an additive constant, is concerned,

equation (1.3) with λ = λ∞ may have multiple solutions in general. Indeed, let N = 1

and f(x) := −(1 − |x|)+ in (1.3). Then, in view of Remark 4.8, it is not difficult to

observe that λ∞ = 0. Furthermore, we define u : R → R by

u(x) :=

∫ x

0

F (y)dy + Cx, F (y) :=

∫ y

0

(1− |u|)+du,

where C ∈ R is a constant. Then, similarly as in the proof of Proposition 4.7, we see

that u is a classical solution of (1.3) for any C ∈ [−1/2, 1/2]. In particular, uniqueness

for u does not hold without any growth condition as |x| → ∞. We remark here that,

if N = 1 and f is convex and superlinear with respect to x, then, up to an additive

constant, there exists only one viscosity solution u of (1.3) which satisfies u(x)/|x| → 1

as |x| → ∞ (see [5, Proposition 5.1]). At this stage, we do not know any uniqueness

result for (1.3) under our assumptions (A1)-(A2).
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