A Change-Point Model for Detecting Heterogeneity in Ordered Survival Responses - Archive ouverte HAL
Article Dans Une Revue Statistical Methods in Medical Research Année : 2017

A Change-Point Model for Detecting Heterogeneity in Ordered Survival Responses

Olivier Bouaziz

Résumé

In this article we suggest a new statistical approach considering survival heterogeneity as a breakpoint model in an ordered sequence of time to event variables. The survival responses need to be ordered according to a numerical covariate. Our esti- mation method will aim at detecting heterogeneity that could arise through the or- dering covariate. We formally introduce our model as a constrained Hidden Markov Model (HMM) where the hidden states are the unknown segmentation (breakpoint locations) and the observed states are the survival responses. We derive an efficient Expectation-Maximization (EM) framework for maximizing the likelihood of this model for a wide range of baseline hazard forms (parametrics or nonparametric). The posterior distribution of the breakpoints is also derived and the selection of the number of segments using penalized likelihood criterion is discussed. The performance of our survival breakpoint model is finally illustrated on a diabetes dataset where the observed survival times are ordered according to the calendar time of disease onset.
Fichier principal
Vignette du fichier
BouazizNuel.pdf (353.35 Ko) Télécharger le fichier
Supporting_Information.pdf (196.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01287075 , version 1 (11-03-2016)
hal-01287075 , version 2 (23-09-2016)

Identifiants

Citer

Olivier Bouaziz, Grégory Nuel. A Change-Point Model for Detecting Heterogeneity in Ordered Survival Responses. Statistical Methods in Medical Research, 2017. ⟨hal-01287075v2⟩
141 Consultations
791 Téléchargements

Altmetric

Partager

More