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1 The Expectation step in the EM algorithm

In this section we explicit formula (4) of the main paper. The (E-step) of the EM
algorithm is defined by

Q(θ|θold) = ER1:n|data,θold
[logP(data, R1:n|θ)] ,

and the (M-step) corresponds of maximizing the previous quantity with respect to θ:

θ̂ = arg max
θ

ER1:n|data,θold
[logP(data, R1:n|θ)] .

We then have:

Q(θ|θold) =

∫
R1:n

P(R1:n|data;θold) logP(R1:n, data;θ)dR1:n,

with P(R1:n, data;θ) = P(data|R1:n;θ)× constant, where the constant does not depend
on θ. Notice that P(data|R1:n;θ) =

∏n
i=1 P(datai|Ri;θ) since the distribution of datai

depends only on Ri. Therefore,

Q(θ|θold) =

n∑
i=1

∫
R1:n

P(R1:n|data;θold) logP(datai|Ri;θ)dR1:n

=

n∑
i=1

∫
Ri

(∫
R−i

1:n

P(R1:n|data;θold)dR−i1:n

)
logP(datai|Ri;θ)dRi,

whereR−i1:n represents the sequenceR1, . . . Ri−1, Ri+1, . . . , Rn. Then,
∫
R−i

1:n
P(R1:n|data;θold)dR−i1:n =

P(Ri|data;θold) and

Q(θ|θold) =
n∑
i=1

∫
Ri

P(Ri|data;θold) logP(datai|Ri;θ)dRi

=
n∑
i=1

K∑
k=1

P(Ri = k|data;θold) logP(datai|Ri = k;θ),

which is equation (4) of the main paper.
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2 The exponential and Weibull baseline hazards

In this model, we assume that the baseline hazard in the kth segment index belongs to
the Weibull family with shape parameter λk and scale parameter pk. That is, λk(t) =
pk(t/λk)

pk−1/λk, Λk(t) = (t/λk)
pk and Sk(t) = exp(−(t/λk)

pk).
Equation (2) of the main paper can then be written in the following way:

log (ei(k;θ)) = ∆i (log(pk)− pk log(λk) + (pk − 1) log(Ti) +Xiβk)−
( Ti
λk

)pk
exp(Xiβk).

The exponential family is derived as a special case of the Weibull case by setting
pk = 1 for all k = 1, . . . ,K. In that case, Equation (2) of the main paper reduces to:

log (ei(k;θ)) = ∆i (− log(λk) +Xiβk)−
( Ti
λk

)
exp(Xiβk).

Computation of the estimates through Equation (3) of the main paper is done via
the survreg function in the survival R package. The gradient vector and Hessian
matrix can directly be derived from the expression of the log-likelihood and the estimates
can then be computed using the Newton-Raphson algorithm. A weight option is also
available in the survreg function which allows to compute estimates that precisely
maximize the log-likelihood Q(θ|θold) presented in Equation (3) of the main paper.

The models obtained under these families of baseline hazard functions have the nice
property that they both belong to the class of parametric Cox models and of parametric
Accelerated Failure Time models (?). Moreover, the two parameters of the Weibull
family make the baseline hazard quite flexible. As a matter of fact, the Weibull model
will provide a fairly good fit to any true baseline hazard that is monotone with time.
However, these families of model will not properly fit a model with true baseline hazard
having a bathtub shape (i.e a ∪ shape) or an upside down bathtub shape (i.e. a ∩ shape)
which are common types of baseline that can occur in practice.

The model introduced in the next section does not assume any specific shape for
the baseline hazard and consequently will be able to fit any class of baseline hazard
functions. However, this model requires to specify in advance a number of cutpoints and
makes the approximation that the hazard is constant between each cutpoint.

3 The piecewise constant baseline hazard

In this model, the baseline hazard on each segment index is assumed to be piecewise
constant on L cuts represented by c0, c1, . . . , cL, with the convention that c0 = 0 and
cL = +∞. Let Il(t) = I(cl−1 < t ≤ cl). We suppose that

λk(t) =

L∑
l=1

Il(t)α
k
l ,

Λk(t) = αk1tI1(t) +

L∑
l=2

(αk1c1 + · · ·+ αkl−1(cl−1 − cl−2) + αkl (t− cl−1))Il(t),
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Sk(t) = exp(αk1t)I1(t) +

L∑
l=2

exp(αk1c1 + · · ·+ αkl−1(cl−1 − cl−2) + αkl (t− cl−1))Il(t).

Equation (2) of the main paper can then be written in the following form:

log (ei(k;θ)) = ∆i (log(λk(Ti)) +Xiβk)−
∫ τ

0
Yi(t)λk(t)dt exp(Xiβk).

For computational purpose, it is interesting to note that the log-likelihood can be written
in a Poisson regression form. Introduce Ri,l =

∫ τ
0 Yi(t)Il(t)dt = I(Ti ≥ cl−1)(cl ∧ Ti −

cl−1), the total time individual i is at risk in the lth interval and Oi,l =
∫ τ
0 Il(t)dNi(t) =

Il(Ti)∆i, the number of events for individual i in the lth subinterval. Then, we have
∆i log(λk) =

∑
lOi,l log(αkl ),

∫ +∞
0 Yi(t)λk(t)dt =

∑
l α

k
l Ri,l and the log-likelihood can

be written again as:

Q(θ|θold) =
n∑
i=1

K∑
k=1

L∑
l=1

wi(k;θold)
{
Oi,l(log(αkl ) +Xiβk)− αkl Ri,l exp(Xiβk)

}
.

This log-likelihood is proportional to the log-likelihood one would obtain in a Poisson
regression, where the Oi,l are the response variables and are assumed to follow, condi-
tionally on the Xi, a Poisson distribution with parameter equal to αkl Ri,l exp(Xiβk).
Therefore, the estimates can easily be computed using the glm function in the R soft-
ware and specifying log(Ri,l) as “offsets” in the model. See for instance ? p.223-225 for
more details on the connection between piecewise-constant hazard model and Poisson
regression. A weight option is also available in the glm function. Finally, note that the
exponential case could also be derived as a special case of the piecewise constant hazard
family with L = 1.

As mentioned earlier, the piecewise constant hazard model is very useful when one
does not know the shape of the baseline hazard a priori. However one must specify in
advance the value of L in the model. Usually choosing an adequate number of cutpoints
allows to provide a good balance between bias and variance estimation. However in our
context, detection of the breakpoints is not very sensitive to the choice of L. This is
discussed in more details in Section 5.3 of the main paper.

4 The nonparametric baseline hazard

In the absence of weights, this model has been widely used because of its great flexibility,
the baseline hazard being estimated without making any assumption on its shape, and
because it can easily be implemented in a straightforward manner. First, the regression
parameter is estimated by maximizing the Cox partial likelihood which contains terms
involving only the regression parameter (and not the baseline hazard). Secondly, the
baseline hazard estimator is deduced by the martingale decomposition of the observed
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counting process. From Equation (1) applied to the observed counting and at-risk pro-
cesses, one gets the following decomposition: for k = 1, . . . ,K, i = 1, . . . , n,

Nik(t)−
∫ t

0
Yik(s) exp(Xiβk)dΛk(s) = Mik(t),

where Nik(t) = Ni(t)I(Ri = k), Yik(t) = Yi(t)I(Ri = k) and Mik(t) is a martingale
with respect to the filtration σ(Nik(s), Yik(s),Xi : 0 ≤ s ≤ t). Taking the expectation
conditionally on {N1:n(t), Y1:n(t),X1:n : 0 ≤ t ≤ τ ;θold}, summing over the n individuals
and taking the differential of both sides of the equation shows that the expression

n∑
i=1

{dNi(t)wi(k;θold)− Yi(t) exp(Xiβk)wi(k;θold)dΛk(t)} (1)

is centered. A weighted Nelson-Aalen estimator is derived from this relation:

Λ̃k(t,βk) =
n∑
i=1

∫ t

0

wi(k;θold)dNi(s)∑
j Yj(s) exp(Xjβk)wj(k;θold)

·

More details on the standard estimation procedure in the Cox model can be found for
instance in ?. Now, plugging-in this quantity into Q(θ|θold) gives the following weighted
Cox partial likelihood:

QPL(β1, . . . ,βK |θold)

=
n∑
i=1

K∑
k=1

∫ τ

0

Xiβk + log(wi(k;θold))− log

 n∑
j=1

Yj(t) exp(Xjβk)wj(k;θold)

wi(k;θold)dNi(t).

Introduce for k = 1, . . . ,K, l = 0, 1, 2, S
(l)
k (t,β;θold) =

∑
j Yj(t)X

⊗l
j exp(Xjβ)wj(k;θold)

and Ek(t,β;θold) = S
(1)
k (t,β;θold)/S

(0)
k (t,β;θold). Then, on each stratum k, define the

score function

Uk(β|θold) =

n∑
i=1

∫ τ

0
{Xi − Ek(t,β;θold)}wi(k;θold)dNi(t),

such that β̂k verifies the equality Uk(β̂k|θold) = 0.

Introduce Vk(t,β;θold) = S
(2)
k (t,β;θold)/S

(0)
k (t,β;θold)− Ek(t,β;θold)⊗2 and let

Ik(β|θold) =

n∑
i=1

∫ τ

0
Vk(t,β;θold)wi(k;θold)dNi(t),

represents minus the derivative of the score function with respect to β. Then, computa-
tion of the estimator θ̂ can be performed using the iterative Newton-Raphson algorithm.
The mth iteration step writes as follows:

β̂
(m)

k = β̂
(m−1)
k + Ik(β̂

(m−1)
k |θold)−1Uk(β̂

(m−1)
k |θold).
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At convergence, we get the estimator θ̃ = (Λ̃1, . . . , Λ̃K , β̂1, . . . , β̂K) where Λ̃k(t) =
Λ̃k(t, β̂k) are plug-in Nelson-Aalen estimators of the cumulative hazard functions. Note
that the θ̃ estimator can be computed with the coxph function in the R survival

library. The weights option can be directly specified in this function.
Finally, as for the parametric models, computation of the new weights is done through

the EM algorithm (see Section 3 of the main paper). Then, a simple idea could be to use
plug-in estimators again, i.e. to replace θ by θ̃ in the expression of the ei(k;θ). How-
ever, although this is a relevant strategy for the parametric models it will not lead to a
consistent estimator for the Cox model. Because of the shape of the Nelson-Aalen esti-
mators, which are stepwise functions, the information in the estimated partial likelihood
(or equivalently in ei(k; θ̃)), at a given time point is limited. To stabilize the solution,
smoothing is needed. In Section 5.2 of the main paper, new kernel type estimators of
the Λks and λks are derived and are used as plug-in estimates in order to compute the
weights.

5 Calibration of the censoring distribution in the simula-
tions

We present here the parameter of the censoring distribution used in Section 6 of the
main paper. In Scenario 1, the censoring was distributed as a uniform distribution
with parameters 0 and 2.4, such that 24%, 65% and 60% of individuals were respectively
censored in segments 1, 2 and 3. In Scenario 2, the censoring was distributed as a uniform
distribution with parameters 0 and 1.8, such that 33%, 47% and 67% of individuals
were respectively censored in segments 1, 2 and 3. In Scenario 3, the censoring was
distributed as a uniform distribution with parameters 0 and 1.5, such that 38%, 54%
and 58% of individuals were respectively censored in segments 1, 2 and 3. In Scenario 4,
the censoring was distributed as a uniform distribution with parameters 0 and 0.9, such
that 23%, 58% and 67% of individuals were respectively censored in segments 1, 2 and
3.

5


