Conjugacy growth series of some infinitely generated groups - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Conjugacy growth series of some infinitely generated groups

Roland Bacher
Pierre de La Harpe
  • Fonction : Auteur
  • PersonId : 829886

Résumé

It is observed that the conjugacy growth series of the infinite fini-tary symmetric group with respect to the generating set of transpositions is the generating series of the partition function. Other conjugacy growth series are computed, for other generating sets, for restricted permutational wreath products of finite groups by the finitary symmetric group, and for alternating groups. Similar methods are used to compute usual growth polynomials and conjugacy growth polynomials for finite symmetric groups and alternating groups, with respect to various generating sets of transpositions. Computations suggest a class of finite graphs, that we call partition-complete, which generalizes the class of semi-hamiltonian graphs, and which is of independent interest. Numerical evidences indicate that the coefficients of a series related to the finitary alternating group seem to satisfy congruence relations reminiscent of Ramanujan's congruences for the partition function.
Fichier principal
Vignette du fichier
BacherHpourArXiv9mars16.pdf (338.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01285685 , version 1 (09-03-2016)
hal-01285685 , version 2 (15-06-2016)

Identifiants

Citer

Roland Bacher, Pierre de La Harpe. Conjugacy growth series of some infinitely generated groups. 2016. ⟨hal-01285685v1⟩
268 Consultations
441 Téléchargements

Altmetric

Partager

More