Generalized topographic block model
Résumé
Co-clustering leads to parsimony in data visualisation with a number of parameters dramatically reduced in comparison to the dimensions of the data sample. Herein, we propose a new generalized approach for nonlinear mapping by a re-parameterization of the latent block mixture model. The densities modeling the blocks are in an exponential family such that the Gaussian, Bernoulli and Poisson laws are particular cases. The inference of the parameters is derived from the block expectation-maximization algorithm with a Newton-Raphson procedure at the maximization step. Empirical experiments with textual data validate the interest of our generalized model.
Domaines
Statistiques [math.ST]
Fichier principal
__userfiles.soton.ac.uk_Library_SLAs_Work_for_ALL%2527s_Work_for_ePrints_Accepted%2520Manuscripts_Priam_Generalized.pdf (2.9 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|