Introduction to network modeling using Exponential Random Graph models (ERGM) - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Introduction to network modeling using Exponential Random Graph models (ERGM)

Résumé

Exponential Family Random Graph Models (ERGM) are increasingly used in the study of social networks. These models are build to explain the global structure of a network while allowing inference on tie prediction on a micro level. The number of paper within economics is however limited. Applications for economics are however abundant. The aim of this document is to provide an explanation of the basic mechanics behind the models and provide a sample code (using R and the packages statnet and ergm) to operationalize and interpret results and analyze goodness of fit. After reading this paper the reader should be able to launch their own analysis.
Fichier principal
Vignette du fichier
ergm_publi.pdf (332.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01284994 , version 1 (08-03-2016)
hal-01284994 , version 2 (17-10-2017)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-01284994 , version 1

Citer

Johannes van Der Pol. Introduction to network modeling using Exponential Random Graph models (ERGM). 2016. ⟨hal-01284994v1⟩
1049 Consultations
7495 Téléchargements

Partager

More