Invariant games and non-homogeneous Beatty sequences - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Discrete Mathematics Année : 2016

Invariant games and non-homogeneous Beatty sequences

Résumé

We characterize all the pairs of complementary non-homogenous Beatty sequences $(A_n)_{n\ge 0}$ and $(B_n)_{n\ge 0}$ for which there exists an invariant game having exactly $\{(A_n,B_n)\mid n\ge 0\}\cup \{(B_n,A_n)\mid n\ge 0\}$ as set of $\mathcal{P}$-positions. Using the notion of Sturmian word and tools arising in symbolic dynamics and combinatorics on words, this characterization can be translated to a decision procedure relying only on a few algebraic tests about algebraicity or rational independence. Given any four real numbers defining the two sequences, up to these tests, we can therefore decide whether or not such an invariant game exists.

Dates et versions

hal-01283829 , version 1 (06-03-2016)

Identifiants

Citer

Julien Cassaigne, Eric Duchene, Michel Rigo. Invariant games and non-homogeneous Beatty sequences. SIAM Journal on Discrete Mathematics, 2016, 30 (3), pp.1798. ⟨hal-01283829⟩
181 Consultations
0 Téléchargements

Altmetric

Partager

More