Tropical Oriented Matroids
Résumé
Tropical oriented matroids were defined by Ardila and Develin in 2007. They are a tropical analogue of classical oriented matroids in the sense that they encode the properties of the types of points in an arrangement of tropical hyperplanes – in much the same way as the covectors of (classical) oriented matroids describe the types in arrangements of linear hyperplanes. Not every oriented matroid can be realised by an arrangement of linear hyperplanes though. The famous Topological Representation Theorem by Folkman and Lawrence, however, states that every oriented matroid can be represented as an arrangement of $\textit{pseudo}$hyperplanes. Ardila and Develin proved that tropical oriented matroids can be represented as mixed subdivisions of dilated simplices. In this paper I prove that this correspondence is a bijection. Moreover, I present a tropical analogue for the Topological Representation Theorem.
La notion de matroïde orientè tropical a été introduite par Ardila et Develin en 2007. Ils sont un analogue des matroïdes orientés classiques dans le sens où ils codent les propriétés des types de points dans un arrangement d'hyperplans tropicaux – d'une manière très similaire à celle dont les covecteurs des matroïdes orientés (classiques) décrivent les types de points dans les arrangements d'hyperplans linéaires. Tous les matroïdes orientés ne peuvent pas être représentés par un arrangement d'hyperplans linéaires. Cependant le célèbre théorème de représentation topologique de Folkman et Lawrence affirme que tout matroïde orientè peut être représenté par un arrangement de $\textit{pseudo}$-hyperplans. Ardila et Develin ont prouvè que les matroïdes orientés tropicaux peuvent être représentés par des sous-divisions mixtes de simplexes dilatés. Je prouve dans cet article que cette correspondance est une bijection. Je présente en outre, un analogue tropical du théorème de représentation topologique.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...