Convex Super-Resolution Detection of Lines in Images - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Convex Super-Resolution Detection of Lines in Images

Résumé

In this paper, we present a new convex formulation for the problem of recovering lines in degraded images. Following the recent paradigm of super-resolution, we formulate a dedicated atomic norm penalty and we solve this optimization problem by means of a primal–dual algorithm. This parsimonious model enables the reconstruction of lines from lowpass measurements, even in presence of a large amount of noise or blur. Furthermore, a Prony method performed on rows and columns of the restored image, provides a spectral estimation of the line parameters, with subpixel accuracy.
Fichier principal
Vignette du fichier
EUSIPCO_Polisano.pdf (358.63 Ko) Télécharger le fichier
polisano-convex-2016-slides.pdf (19.33 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01281979 , version 1 (03-03-2016)
hal-01281979 , version 2 (17-06-2016)

Identifiants

Citer

Kévin Polisano, Laurent Condat, Marianne Clausel, Valérie Perrier. Convex Super-Resolution Detection of Lines in Images. EUSIPCO 2016 - 24th European Signal Processing Conference, Aug 2016, Budapest, Hungary. pp.336-340, ⟨10.1109/EUSIPCO.2016.7760265⟩. ⟨hal-01281979v2⟩
399 Consultations
841 Téléchargements

Altmetric

Partager

More