Learning Human Identity from Motion Patterns - Archive ouverte HAL
Article Dans Une Revue IEEE Access Année : 2016

Learning Human Identity from Motion Patterns

Résumé

We present a large-scale study, exploring the capability of temporal deep neural networks in interpreting natural human kinematics and introduce the first method for active biometric authentication with mobile inertial sensors. At Google, we have created a first-of-its-kind dataset of human movements, passively collected by 1500 volunteers using their smartphones daily over several months. We (1) compare several neural architectures for efficient learning of temporal multi-modal data representations, (2) propose an optimized shift-invariant dense convolutional mechanism (DCWRNN) and (3) incorporate the discriminatively-trained dynamic features in a probabilistic generative framework taking into account temporal characteristics. Our results demonstrate, that human kinematics convey important information about user identity and can serve as a valuable component of multi-modal authentication systems.
Fichier principal
Vignette du fichier
ieeeaccess2016.pdf (2.76 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01281946 , version 1 (21-09-2016)

Identifiants

Citer

Natalia Neverova, Christian Wolf, Lacey Griffin, Lex Fridman, Deepak Chandra, et al.. Learning Human Identity from Motion Patterns. IEEE Access, 2016, 4, pp.1810-1820. ⟨10.1109/ACCESS.2016.2557846⟩. ⟨hal-01281946⟩
540 Consultations
297 Téléchargements

Altmetric

Partager

More