Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Fourier Année : 2012

Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type

Résumé

Let X be a Riemannian symmetric space of the noncompact type. We prove that the solution of the time-dependent Schrödinger equation on X with square integrable initial condition f is identically zero at all times t whenever f and the solution at a time t 0 >0 are simultaneously very rapidly decreasing. The stated condition of rapid decrease is of Beurling type. Conditions respectively of Gelfand-Shilov, Cowling-Price and Hardy type are deduced.
Fichier principal
Vignette du fichier
Schroedinger-revised-2-3-11.pdf (262.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01279413 , version 1 (26-02-2016)

Identifiants

Citer

Angela Pasquale, Maddala Sundari. Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type. Annales de l'Institut Fourier, 2012, 62 (3), pp.859-886. ⟨10.5802/aif.2710⟩. ⟨hal-01279413⟩
48 Consultations
76 Téléchargements

Altmetric

Partager

More