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UNCERTAINTY PRINCIPLES FOR THE SCHRÖDINGER EQUATION ON
RIEMANNIAN SYMMETRIC SPACES OF THE NONCOMPACT TYPE

A. PASQUALE AND M. SUNDARI

Abstract. Let X be a Riemannian symmetric space of the noncompact type. We prove that the
solution of the time-dependent Schrödinger equation on X with square integrable initial condition
f is identically zero at all times t whenever f and the solution at a time t0 > 0 are simultaneously
very rapidly decreasing. The stated condition of rapid decrease is of Beurling type. Conditions
respectively of Gelfand-Shilov, Cowling-Price and Hardy type are deduced.

1. Introduction

Consider the initial value problem for the time-dependent Schrödinger equation on a Riemannian
symmetric space of the noncompact type X:

i∂tu(t, x) + ∆u(t, x) = 0

u(0, x) = f(x)
(S)

where ∆ denotes the Laplace-Beltrami operator on X. In [5], Sagun Chanillo initiated the study of
certain uniqueness properties for the solutions of (S) that are related with the uncertainty principle.
According to this principle, the solution u(t, ·) must be identically zero at all times t whenever
the initial condition f and the solution at a certain time t0 6= 0 are simultaneously very rapidly
decreasing. The case considered by Chanillo corresponds to Riemannian symmetric spaces of the
form X = G/K where G is a noncompact connected semisimple Lie group possessing a complex
structure and K is a maximal compact subgroup of G. Moreover, in [5] the initial condition f
is assumed to be K-invariant, which ensures that the solution itself is K-invariant. Some related
articles in the Euclidean setting are [18], [9], [10], [11] and [6]; for the Heisenberg group [3].

In this paper, we consider the inital value problem (S) on arbitrary Riemannian symmetric spaces
X of the noncompact type and not-necessarily K-invariant initial data f ∈ L2(X). We show that
if f and the solution u(t0, ·) at some time t0 > 0 satisfy a suitable Beurling type condition, then
u(t, ·) = 0 for all t ∈ R. This describes an uncertainty principle because of the kind of relation
one gets between the Fourier transforms of ut = u(t, ·) and the initial condition f ; see (37). Our
result in particular also implies the uniqueness property of solutions for the Schrödinger equation
(S) proved by Chanillo using Hardy type conditions.

On X, the rapid decrease of a function is measured by means of exponential powers of the
distance function d on X induced by the Riemannian metric. If o = eK denotes the base point in
X, we set σ(x) := d(o, x). The estimates are also in terms of the elementary spherical function of
spectral parameter 0, denoted by Ξ. We denote by C(R : L2(X)) the space of continuous functions
t 7→ u(t, ·) from R to L2(X). We refer to section 2.4 for the precise definitions. Our main result is
the following theorem.
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Theorem 1.1. Let X be a Riemannian symmetric space of the noncompact type and let f ∈ L2(X).
Let u(t, x) ∈ C(R : L2(X)) denote the solution of (S) with initial condition f . If there is a time
t0 > 0 so that ∫

X

∫
X
|f(x)||u(t0, y)|Ξ(x)Ξ(y)e

σ(x)σ(y)
2t0 dx dy <∞ , (1)

then u(t, ·) = 0 for all t ∈ R.

The proof of Theorem 1.1 is given in section 4.3. It is based on a reduction to a Euclidean situation
by means of the Radon transform. This is a powerful technique that is commonly used to attack
problems related to the uncertainty principle on symmetric spaces as well as on Euclidean spaces;
see for instance [22, 23, 21, 20]. In our situation, the important feature is that for functions satisfying
(1), the composition of the Radon transform and a Euclidean Fourier transform gives the Helgason-
Fourier transform. A Beurling theorem for the Helgason-Fourier transform has been proved by
Sarkar and Sengupta (see [20], Theorem 4.1), under the assumption f ∈ L1(X)∩L2(X). However,
unlike the Euclidean case treated in section 3 below, we cannot deduce our uniqueness theorem
from Beurling’s theorem on Riemannian symmetric spaces. In fact, in the Euclidean situation, the
moduli of the initial value function f(x) and of the solution u(t, x) are (up to constants) equal
to those of a Fourier transform pair (h, ĥ). So Beurling’s theorem for (h, ĥ) yields the required
uniqueness for the Schrödinger solution. See Corollary 3.5. A similar property does not hold for
general Riemannian symmetric spaces. This is a consequence of the lack of duality between the
Helgason-Fourier transform and its inverse. One can in part recover this duality for K-invariant
functions on Riemannian symmetric spaces G/K with G complex. In this case, one can work on a
maximally flat geodesic submanifold, where the Helgason-Fourier transform reduced essentially to
a Euclidean Fourier transform. This is the approach used in [5].

The classical version of Beurling’s theorem on Rn is among the strongest qualitative uncertainty
principles. By this, we mean theorems which allow to conclude that f = 0 by giving quantitative
conditions on f and its Fourier transform f̂ . For instance, Beurling’s theorem implies the qualitative
uncertainty principles of Gelfand-Shilov, Cowling-Price and Hardy. Following this line, in section
5 we prove that the uniqueness property stated in Theorem 1.1 implies uniqueness properties
respectively of Gelfand-Shilov, Cowling-Price and Hardy type, for the solution of the Schrödinger
equation on a Riemannian symmetric space.

Finally, we study more closely the Hardy type conditions. Let α and β be the exponents mea-
suring respectively the very rapid decay of the initial condition f and the solution ut0 at a time
t0 > 0. Then the uniqueness property is proven to hold when the condition 16t20αβ > 1 is satisfied.
The value of t0 is shown to be optimal. More precisely, in Theorem 5.9 we prove that, under the
additional assumption that G admits a complex structure, the K-invariant initial conditions f for
which the uniqueness property fails in the case 16t20αβ = 1 are precisely the constant multiples of
an explicitly given function.

Acknowledgements: This paper was partly written when the authors were visiting the Scuola
Normale Superiore di Pisa and the Department of Mathematics of the IISc Bangalore. The authors
would like to express their gratitude to Micheal Cowling and Fulvio Ricci for the invitation to
the Intensive Research Period “Euclidean Harmonic Analysis, Nilpotent Lie Groups and PDEs”
and to the Centro di Ricerca Matematica Ennio de Giorgi for financial support. They also thank
E.K. Narayanan, A. Sitaram and S. Thangavelu for their hospitality and financial support. The
second named author also acknowlegdes financial support from the Chennai Mathematical Institute;
the first named author would like to thank the Indo-French Institute for Mathematics for travel
support. Finally, we would like to express our thanks to S. Chanillo, P. Ciatti, M. Cowling, N.
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2. Notation and preliminaries

2.1. Riemannian symmetric spaces of the noncompact type and their structure. Let
X be a Riemannian symmetric space of the noncompact type. Then X = G/K where G is
a noncompact, connected, semisimple, real Lie group G with finite center and K is a maximal
compact subgroup of G. Let g be the Lie algebra of G and let k (⊂ g) be the Lie algebra of K.
We have the Cartan decomposition g = k⊕ p, where p is the subspace of g which is orthogonal to
k with respect to the Killing form B of g. Then p can be identified with the tangent space to X at
the base point o = eK. We fix a maximal abelian subspace a of p. We denote by a∗ the (real) dual
space of a and by a∗C its complexification. The Killing form B is a (positive definite) inner product
on p and hence on a. For H1, H2 ∈ a we set 〈H1, H2〉 := B(H1, H2) and |H1| := 〈H1, H1〉1/2. We
extend this inner product to a∗ by duality by setting 〈λ, µ〉 := 〈Hλ, Hµ〉 if Hλ is the unique element
of a so that 〈H,Hλ〉 = λ(H) for all H ∈ a. The C-bilinear extension of 〈·, ·〉 to a∗C will be indicated
by the same symbol.

The set of (restricted) roots of the pair (g, a) is denoted by Σ. It consists of all α ∈ a∗ for which
the vector space gα := {X ∈ g : [H,X] = α(H)X for every H ∈ a} contains nonzero elements. The
dimension mα of gα is called the multiplicity of the root α. We shall adopt the convention that
m2α = 0 if 2α is not a root. The subset of a on which all roots vanish is a finite union of hyperplanes.
We can therefore choose Y ∈ a so that α(Y ) 6= 0 for all α ∈ Σ. Put Σ+ := {α ∈ Σ : α(Y ) > 0}.
Then Σ+ is a system of positive roots, and Σ is the disjoint union of Σ+ and −Σ+. A root α ∈ Σ is
said to be indivisible if α/2 /∈ Σ. We denote by Σ0 the set of indivisible roots and set Σ+

0 := Σ+∩Σ0.
The half-sum of the positive roots counted with multiplicites is denoted by ρ: hence

ρ =
1
2

∑
α∈Σ+

mαα . (2)

The set a+ := {H ∈ a : α(H) > 0 for all α ∈ Σ+} is an open polyhedral cone called the positive
Weyl chamber. The corresponding Weyl chamber in a∗ is a∗+ := {λ ∈ a∗ : 〈λ, α〉 > 0 for all α ∈ Σ+}.

Let exp : g → G be the exponential map of G, and set A := exp a and A+ := exp a+. Then A
is an abelian subgroup of G that is diffeomorphic to a under exp. The inverse diffeomorphism is
denoted by log.

The Weyl group W of the pair (g, a) is the finite group of orthogonal transformations of a
generated by the reflections rα with α ∈ Σ, where

rα(H) := H − 2
α(H)
〈α, α〉

Hα , H ∈ a .

The Weyl group action extends to A via the exponential map, to a∗ by duality, and to a∗C by
complex linearity.

Set n := ⊕α∈Σ+gα. Then N := exp n is a simply connected nilpotent subgroup of G. The
subgroup A normalizes N . The map (k, a, n) 7→ kan is an analytic diffeomorphism of the product
manifold K×A×N onto G. The resulting decomposition G = KAN = KNA is called the Iwasawa
decomposition of G. Thus, for g ∈ G we have g = k(g) expH(g)n(g) for uniquely determined
k(g) ∈ K, H(g) ∈ a and n(g) ∈ G. One can prove that

|H(ak)| ≤ | log a| (3)

for all a ∈ A and k ∈ K.
3



Let M be the centralizer of A in K and set B = K/M . Then the map A : X ×B → a is defined
by

A(gK, kM) := −H(g−1k) . (4)
Besides the Iwasawa decomposition, we will also need the polar decomposition G = KAK: every
g ∈ G can be written in the form g = k1ak2 with k1, k2 ∈ K and a ∈ A. The element a is unique
up to W -invariance.

2.2. Normalization of measures and integral formulas. We shall adopt the normalization of
measures as in [15], Ch. II, §3.1. In particular, the Haar measures dk and dm on the compact
groups K and M are normalized to have total mass 1. The Haar measures da and dλ on A and a∗,
respectively, are normalized so that the Euclidean Fourier transform

(FAf)(λ) :=
∫
A
f(a)e−iλ(log a) da , λ ∈ a∗ , (5)

of a sufficiently regular function f : A→ C is inverted by

f(a) =
∫

a∗
(FAf)(λ)eiλ(log a) dλ , a ∈ A . (6)

The Haar measures dg and dn ofG andN , respectively, are normalized so that dg = e2ρ(log a) dk da dn .
Moreover, if U is a Lie group and P is a closed subgroup of U , with left Haar measures du and dp,
respectively, then the U -invariant measure d(uP ) on the homogeneous space U/P (when it exists)
is normalized by ∫

U
f(u) du =

∫
U/P

(∫
P
f(up) dp

)
d(uP ) . (7)

This condition normalizes the G-invariant measure dx = d(gK) on X = G/K and fixes the K-
invariant measure db = d(kM) on B = K/M to have total mass 1.

Corresponding to the Iwasawa and the polar decompositions, we have the integral formulas∫
X
f(x) dx =

∫
G
f(g · o) dg =

∫
K

∫
A

∫
N
f(kan · o)e2ρ(log a) dk da dn (8)

= c

∫
K

∫
A+

f(ka · o)δ(a) dk da (9)

where

δ(expH) =
∏
α∈Σ+

(sinhα(H))mα = e2ρ(H)
∏
α∈Σ+

(1− e−2α(H)

2
)mα , H ∈ a+ (10)

and c is a suitable positive constant.

2.3. Invariant differential operators on X and the Laplace-Beltrami operator. Let D(X)
denote the commutative algebra of invariant differential operators on X which are invariant under
the action of G on X by left translations. As a Riemannian manifold, a symmetric space of the
noncompact type X = G/K is endowed with a Laplace-Beltrami operator ∆ defined by ∆f =
div ◦ grad f for f ∈ C∞(X). It turns out that ∆ is a self-adjoint differential operator on L2(X)
belonging to D(X).

Let λ ∈ a∗C and b ∈ B. Then the function eλ,b : X → C defined by

eλ,b(x) = e(iλ+ρ)(A(x,b)) , x ∈ X , (11)

is an eigenfuntion of ∆. In fact,

∆eλ,b = −(〈λ, λ〉+ 〈ρ, ρ〉)eλ,b . (12)

We refer to [14], Ch. II, for additional information.
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2.4. K-invariant functions. Functions f : X → C can be identified with right K-invariant
functions on G, i.e. with functions f : G → C so that f(gk) = f(g) for all g ∈ G and k ∈ K.
Likewise, K-invariant functions on X can be identified with K-bi-invariant functions on G, i.e.
with functions f : G → C so that f(k1gk2) = f(g) for all g ∈ G and k1, k2 ∈ K. In turn, because
of the polar decomposition G = KAK = KA+K, a K-bi-invariant function on G can be identified
with its W -invariant restriction to A or with its restriction to A+. The Riemannian distance from
the origin o, defined by σ(x) = d(x, o), is an example of K-invariant map on X. According to the
above identifications, we shall sometimes write σ(g) instead of σ(g · o) for g ∈ G. If x = g · o and
g = k1 expHk2 with g ∈ G, H ∈ a and k1, k2 ∈ K, then

σ(x) = σ(g) = σ(expH) = |H|. (13)

The function σ satisfies the following inequalities:

σ(gh) ≤ σ(g) + σ(h) , g, h ∈ G , (14)

σ(an) ≥ σ(a) , a ∈ A ,n ∈ N . (15)

Another K-invariant function on X we shall employ is the spherical function Ξ of spectral
parameter 0. It is defined by

Ξ(x) =
∫
B
e0,b(x) db =

∫
K
e−ρ(H(gk)) dk , x = g · o ∈ X. (16)

It is a real analytic function and, writing Ξ(g) instead of Ξ(g · o), it satisfies the following
properties:

0 < Ξ(g) = Ξ(g−1) ≤ 1 , g ∈ G , (17)∫
K

Ξ(g1kg2) dk = Ξ(g1)Ξ(g2) , g1 , g2 ∈ G , (18)

e−ρ(H) ≤ Ξ(a) ≤ e−ρ(H)(1 + |H|)d , a = expH ∈ A+ , (19)

where d = |Σ+
0 | is the cardinality of the set of positive indivisible roots. The properties of the

functions σ and Ξ can be found in [12], §4.6 and §6.2.

2.5. The Helgason-Fourier transform and the Radon transform. A reference for this section
is [15], Ch. III. The Helgason-Fourier transform of a sufficiently regular function f : X → C is the
function Ff defined by

Ff(λ, b) =
∫
X
f(x)e−λ,b(x) dx =

∫
AN

f(kan · o)e(−iλ+ρ)(log a) da dn (20)

for all λ ∈ a∗C and b = kM ∈ B for which this integral exists. The Plancherel theorem states that
the Helgason-Fourier transform F extends to an isometry of L2(X) onto L2(a∗+×B, |c(λ)|−2db dλ).
The function c(λ) occurring in the Plancherel density is Harish-Chandra’s c-function. It is the
meromorphic function on a∗C given explicitly by the Gindikin-Karpelevich product formula:

c(λ) = c0

∏
α∈Σ+

0

cα(λ) (21)

where

cα(λ) =
2−iλα Γ(iλα)

Γ
(
iλα
2 + mα

4 + 1
2

)
Γ
(
iλα
2 + mα

4 + m2α
2

) (22)

and the constant c0 is given by the condition c(−iρ) = 1. In (22) we have employed the notation

λα :=
〈λ, α〉
〈α, α〉

(23)
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for α ∈ Σ and λ ∈ a∗C.
Observe that if f ∈ L2(X) then, by the Plancherel theorem, for almost all λ ∈ a∗ we have

Ff(λ, ·) ∈ L2(B).
The Helgason-Fourier transform Ff of a function f ∈ L1(X) is almost everywhere defined. More

precisely, there exists a subset B′ ⊂ B (depending on f) with B \ B′ of zero measure, such that
Ff(λ, b) is defined for each λ ∈ a∗. In fact, Ff(λ, b) is defined and holomorphic for λ in a small tube
domain around a∗ in a∗C. It turns out that F is injective on L1(X). Furthermore, as in the Euclidean
case, there is an inversion formula for functions f ∈ L1(X) with Ff ∈ L1(a∗ × B, |c(λ)|−2db dλ):
for almost all x ∈ X, we have

f(x) =
1
|W |

∫
a∗×B

Ff(λ, b)eλ,b(x)
db dλ

|c(λ)|2
, (24)

where |W | denotes the cardinality of the Weyl group W .
By identifying the space G/MN of horocycles on X with B × A, one can define the Radon

transform of a sufficiently regular function f : X → C as the function Rf defined by

Rf(b, a) = eρ(log a)

∫
N
f(kan · o) dn (25)

for all b = kM ∈ B = K/M and a ∈ A for which this integral exists. See [15], p. 220 or [8]. If
f ∈ L1(X), then the integral defining Rf(b, a) converges absolutely for almost all (b, a) ∈ B × A
and Rf ∈ L1(B × A). Indeed ‖Rf‖L1(B×A,db da) ≤ |W |‖f‖1; see [8], Lemma 3.2. By [15], Ch. II,
Theorem 3.2, the Radon transform is injective on L1(X). Notice that if Rf ∈ L1(B × A) then for
almost all a ∈ A we have Rf(·, a) ∈ L1(B).

The Helgason-Fourier transform of a sufficiently regular function f is the Euclidean Fourier
transform of the Radon transform. For instance, if f ∈ L1(X), then

Ff(λ, b) = FA
(
Rf(b, ·)

)
(λ) =

∫
A
Rf(b, a)e−iλ(log a) da . (26)

for almost all b ∈ B and all λ ∈ a∗. See e.g. the proof of formula (43), Ch. III, §1 in [15].

2.6. Analysis on B = K/M . Let K̂ denote the set of (equivalence classes of) irreducible unitary
representations of K. Fix δ ∈ K̂ acting on the space Vδ of finite dimension d(δ). We consider Vδ
endowed with an inner product 〈·, ·〉 making δ unitary. Let M = ZK(A) be the centralizer of A in
K. A vector v ∈ Vδ is said to be M -fixed if δ(m)v = v for all m ∈M . Let VM

δ denote the subspace
of M -fixed vectors of Vδ. We denote by K̂M the subset of K̂ consisting of (equivalence classes of)
representations of K for which dimVM

δ > 0.
As before, let B = K/M . For f : B → C sufficiently regular, we define f δ : B → Hom(Vδ, Vδ) by

f δ(kM) = d(δ)
∫
K
δ(k−1

1 )f(k1kM) dk1 , k ∈ K . (27)

Then
f δ(kM) = δ(k)f δ(eM) (28)

for all k ∈ K. In particular, f δ = 0 for δ /∈ K̂M .
The functions f δ determine f ∈ L2(B) by the Peter-Weyl theorem for vector-valued functions,

stating that

f =
∑
δ∈K̂M

Trace(f δ) . (29)
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See [14], Ch. V, Corollary 3.4. More generally, (29) holds in the sense of distributions when
f ∈ L1(B). See [14], p. 508. Let v1, . . . , vd(δ) be an orthonormal basis of Vδ. For i, j = 1, . . . , d(δ),
define f δi,j ∈ C by

f δi,j = d(δ)−1〈f δ(eM)vi, vj〉 =
∫
K
〈δ(k−1)vi, vj〉f(kM) dk . (30)

Observe that, by (28) and (30), we have f δ = 0 if and only if f δi,j = 0 for all i, j = 1, . . . , d(δ).
Moreover, by (29), f = 0 if and only if f δ = 0 for all δ ∈ K̂M .

3. The Euclidean case

3.1. The damped Schrödinger equation on Rn. Let FRn denote the Fourier transform on Rn.
For a (sufficiently regular) function f on Rn, we also write f̂ = FRnf . We fix as a measure on Rn

the Lebesgue measure divided by the factor (2π)n/2.
Consider the initial value problem for the time-dependent damped Schrödinger equation on Rn:

i∂tu(t, x) + (∆− c)u(t, x) = 0

u(0, x) = f(x)
(Sc)

where ∆ denotes the Laplace operator on Rn and c ∈ R is the damping parameter. Suppose
f ∈ L2(Rn). Then there is a unique u ∈ C(R : L2(Rn)) satisfying (Sc) in the sense of distributions
and such that u(0, ·) = f . In fact, let |λ| denote the euclidean norm of λ ∈ Rn. The Fourier
transform FRn gives a unitary equivalence of ∆ with the multiplication operator M on L2(Rn)
defined by (Mf)(λ) = −|λ|2f(λ). It follows that the unique solution ut(x) = u(t, x) of (Sc) is
characterized by the equation

ût(λ) = e−i(|λ|
2+c)tf̂(λ) . (31)

Equivalently, ut = F−1
Rn
(
e−i(|λ|

2+c)tFRnf
)
. See for instance [19], §3.5, Theorem 1 and Corollary 2.

We will need precise information on the solution of (31) in the space S ′(Rn) of tempered distri-
butions on Rn for functions f which are not necessarily in L2(Rn).

Let OM (Rn) denote the space of functions ϕ on Rn which are C∞ with slow growth (i.e. each
derivative of ϕ is bounded by a polynomial), and let O′C(Rn) be the space of rapidly decreasing
distributions T on Rn (i.e. T ∈ S ′(Rn) and T ∗ϕ ∈ S(Rn) for all ϕ ∈ S(Rn)). See [24], p. 243–245.
Then the Fourier transform is an isomorphism of OM (Rn) onto O′C(Rn). For every fixed a ∈ R, we
have e−ia|x|

2 ∈ OM (Rn) ∩O′C(Rn). The following properties hold.

Lemma 3.1. If S ∈ OM (Rn), T ∈ O′C(Rn) and F ∈ S ′(Rn), then
(a) SF ∈ S ′(Rn) and T ∗ F ∈ S ′(Rn) .
(b) ŜF = Ŝ ∗ F̂ and ̂(T ∗ F ) = T̂ F̂ .

Proof. See [24], Ch. VII, §8, théorème XV. �

Let c ∈ R and t 6= 0 be fixed. In S ′(Rn), we have, with our normalisation of the Lebesgue
measure:

γ̂c,t(λ) = e−i(|λ|
2+c)t

if

γc,t(x) = (2|t|)−n/2e−icte−πi(sign t)n/4ei
|x|2
4t ,

where sign t := t/|t|. See for instance [17], Theorem 7.6.1. Thus part (b) in Lemma 3.1 gives for
F ∈ S ′(Rn)

e−i(|λ|
2+c)tF̂ = γ̂c,tF̂ = (γc,t ∗ F )∧ .
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Since the Fourier transform is injective on S ′(Rn), we obtain that the unique solution to the equation

ût = e−i(|λ|
2+c)tf̂

in S ′(Rn) is
ut = γc,t ∗ f . (32)

Applying this property to the damped Schrödinger equation, we obtain in particular that, if
f ∈ L1(Rn), then for t 6= 0 the solution to (Sc) can be written explicitly as

u(t, x) = (γc,t ∗ f)(x) = (2π)n/2(2|t|)−n/2e−icte−πi(sign t)n/4ei
|x|2
4t ĥt

( x
2t
)

(33)

where

ht(y) = ei
|y|2
4t f(y) . (34)

If f ∈ L2(Rn), then (33) and (34) hold as equalities in L2(Rn).

3.2. Beurling-type uncertainty principles in Rn. Beurling’s theorem, proven by Hörmander
in [16], provides one of the strongest quantitative versions of the uncertainty principles for the
Fourier transform on R.

Theorem 3.2 (Beurling’s theorem). Let f ∈ L1(R). If∫
R

∫
R
|f(x)||f̂(y)|e|xy| dx dy <∞

then f = 0 almost everywhere.

A simplified proof of Theorem 3.2 can be found in the appendix of [4]. Some higher dimensional
versions of this theorem have been proven recently by Bagchi and Ray. One of these versions is the
following theorem. See [2], Corollary 1.

Theorem 3.3. Let f ∈ L1(Rn). Suppose that∫
Rn

∫
Rn
|f(x)||f̂(y)|e|x||y| dx dy <∞ .

Then f = 0 almost everywhere.

Corollary 3.4. Suppose f, ut satisfy (31). If f ∈ L1(Rn) and there is t0 > 0 so that∫
Rn

∫
Rn
|f(x)||u(t0, y)|e

|x||y|
2t0 dx dy <∞ (35)

then f = 0. Hence u(t, ·) = 0 for all t ∈ R.

Proof. According to (35) and (33), we have

+∞ >

∫
Rn

∫
Rn
|f(x)||u(t0, y)|e

|x||y|
2t0 dx dy =

1
(2t0)n/2

∫
Rn

∫
Rn

∣∣ht0(x)ĥt0
( y

2t0

)∣∣e |x||y|2t0 dx dy

= (2t0)n/2
∫

Rn

∫
Rn
|ht0(x)||ĥt0(y)|e|x||y| dx dy

Theorem 3.3 gives then ht0 = 0 and hence f = 0. Thus u(t, ·) = 0 for all t ∈ R by (33). �

Corollary 3.5. Let u(t, x) ∈ C(R : L2(Rn)) be the solution to the initial value problem (Sc) with
initial condition f ∈ L2(Rn). If there is t0 > 0 so that (35) holds. Then f = 0 and hence u(t, ·) = 0
for all t ∈ R.
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Proof. By Corollary 3.4, it suffices to prove that f ∈ L1(Rn). If u(t0, ·) = 0 a.e., then f̂ =
ei(|λ|

2+c)t0 ût0 = 0. Hence f = 0. We can therefore suppose that u(t0, ·) is not a.e. zero. By (35),
we have

|u(t0, y)|
∫

Rn
|f(x)|e

|x||y|
2t0 dx <∞ (36)

for almost all y ∈ Rn. Since ut0 does not vanish almost everywhere, (36) gives for some y0 ∈ Rn∫
Rn
|f(x)| dx ≤

∫
Rn
|f(x)|e

|x||y0|
2t0 dx <∞ .

Thus f ∈ L1(Rn). �

4. The case of a Riemannian symmetric space of the noncompact type

4.1. The Schrödinger equation on X. Consider the initial value problem for the time-dependent
Schrödinger equation on the Riemannian symmetric space X = G/K:

i∂tu(t, x) + ∆u(t, x) = 0

u(0, x) = f(x)
(S)

where ∆ is the Laplace-Beltrami operator on X. Suppose f ∈ L2(X). Then the analysis of solutions
of the Schrödinger equation on Rn carries out to X when the Fourier transform FRn is replaced by
the Helgason-Fourier transform F . In fact, by (12), the function eλ,b appearing in the definition
of the Helgason-Fourier transform are eigenfunctions of the Laplace-Beltrami operator ∆. Hence,
by the Plancherel theorem, F is a unitary equivalence of ∆ with the multiplication operator M on
L2(a∗ × B, dλ db

|c(λ)|2 ) defined by (Mf)(λ, b) = −(|λ|2 + |ρ|2)f(λ, b). It follows that there is a unique
ut(x) = u(t, x) ∈ C(R : L2(X)) satisfying (S) in the sense of distributions on X and such that
u(0, ·) = f . It is characterized by the equation

(Fut)(λ, b) = e−i(|λ|
2+|ρ|2)tFf(λ, b) . (37)

Equivalently, ut = F−1
(
e−i(|λ|

2+|ρ|2)tFf
)
. We observe, in particular, that u ∈ C(R : S(X)) if

f ∈ S(X). Here S(X) is the Schwartz space of smooth rapidly decreasing functions on X; see e.g.
[15], pp. 214–220.

Notice that, as F is a bijection on L2(X), the condition f = 0 implies ut = 0 for all t ∈ R.
Conversely, suppose there is t0 ∈ R so that ut0 = 0. Then (37) gives e−i(|λ|

2+|ρ|2)t0Ff(λ, b) = 0 for
all (λ, b). Hence Ff = 0. Thus f = 0 and ut = 0 for all t ∈ R. This remark applies more generally
to solutions of (37) in S ′(X), the space of tempered distributions on X.

4.2. The class of functions L1(X)C . Let Ξ and σ be the functions defined in (16) and (13),
respectively. Let C ≥ 0. For a measurable function h : X → C we set

‖h‖1,C :=
∫
X
|h(x)|Ξ(x)eCσ(x) dx

We denote by L1(X)C the C-vector space of (equivalence classes of a.e. equal) functions on X for
which ‖h‖1,C <∞.

The motivation for introducing this class of functions is the following. Suppose f, ut0 satisfy
Beurling’s condition (1). Then f ∈ L1(X)C for some C ≥ 0. Indeed if u(t0, ·) vanishes almost
everywhere, then f = 0 by (37); if u(t0, ·) does not vanish almost everywhere, (1) implies

|u(t0, y)|Ξ(y)
∫
X
|f(x)|Ξ(x)e

σ(x)σ(y)
2t0 dx dy <∞

for almost all y ∈ X, whence the result with C = σ(y)/t0 for any y 6= o such that u(t0, y) 6= 0.
Likewise (1) implies u(t0, ·) ∈ L1(X)C′ for some C ′ > 0 and we may assume C = C ′.
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Lemma 4.1. Let h be a measurable function on X and let C ≥ 0 be a constant. Then∫
X
|h(x)|Ξ(x)eCσ(x) dx =

∫
G
|h(g · o)|e−ρ(H(g))eCσ(g) dg . (38)

Moreover, ∫
B

∫
A

(R|h|)(b, a)eCσ(a) da db ≤ ‖h‖1,C . (39)

Consequently, the Radon transform Rh of a function h ∈ L1(X)C is almost everywhere defined and
Rh ∈ L1(B ×A, eCσ(a)da db).

Proof. Because of the definition of Ξ in (16), we have∫
X
|h(x)|Ξ(x)eCσ(x) dx =

∫
G

∫
K
|h(g · o)|e−ρ(H(gk))eCσ(g) dg dk .

Then (38) follows by the right-K-invariance of σ and the map g 7→ h(g · o).
Suppose now that

∫
X |h(x)|Ξ(x)eCσ(x) dx <∞. By (38), the integral formula (8) for the Iwasawa

decomposition and the inequality (15), we can write this integral as∫∫∫
K×A×N

|h(kan · o)|e−ρ(log a)eCσ(an)e2ρ(log a) dk da dn

≥
∫
K

∫
A

(
eρ(log a)

∫
N
|h(kan · o)| dn

)
eCσ(a) da dk

=
∫
B

∫
A

(R|h|)(b, a)eCσ(a) da db .

This proves (39). The final property then follows as

|Rh(a, b)| ≤ eρ(log a)

∫
N
|h(kan · o)| dn = R|h|(a, b) .

�

The Radon transform Rh of a function h ∈ L1(X)C is well defined and Rh ∈ L1(B×A). In fact,
we also have h ∈ L1(X) when C is sufficiently big.

Lemma 4.2. For all x ∈ X, we have

Ξ(x)e|ρ|σ(x) ≥ 1 . (40)

Consequently, L1(X)C ⊂ L1(X) for C ≥ |ρ|.

Proof. By (19), for all a = expH ∈ A+ we have Ξ(a · o)e|ρ|σ(a·o) ≥ Ξ(a · o)eρ(H) ≥ 1. The inequality
(40) then follows by K-invariance of Ξ and σ and by the decomposition G = KA+K. �

Even if h ∈ L1(X)C may not be in L1(X) unless C is sufficiently big, we have Rh(b, ·) ∈ L1(A) for
almost all b ∈ B by Lemma 4.1. So we can consider FA

(
Rh(b, ·)

)
. In fact, on L1(X)C the equality

F = FA ◦R holds. To prove this, we work on K-types. Let δ ∈ K̂M and let v1, . . . , vd(δ) be a fixed
orthonormal basis of the space Vδ of δ. Recall from (30) the notation f δi,j for f : B = K/M → C.
Recall also that f δ = 0 if and only if f δi,j = 0 for all i, j = 1, . . . , d(δ).

Lemma 4.3. Let C ≥ 0 be a constant and let h ∈ L1(X)C . For a ∈ A and λ ∈ a∗ set

(Rh)δi,j(a) := ((Rh)(·, a))δi,j =
∫
K
〈δ(k−1)vi, vj〉Rh(kM, a) dk (41)

(Fh)δi,j(λ) := (Fh(λ, ·))δi,j =
∫
K
〈δ(k−1)vi, vj〉Fh(λ, kM) dk (42)
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For a function g : a∗ → C, set ‖g‖∞ := supλ∈a∗ |g(λ)|. Then

‖FA
(
(Rh)δi,j

)
‖∞ ≤ ‖h‖1,C (43)

‖(Fh)δi,j‖∞ ≤ ‖h‖1,C (44)

Suppose moreover that Rh ∈ L1(B ×A) and set[
FA(Rh)

]δ
i,j

(λ) :=
∫
K
〈δ(k−1)vi, vj〉FA

(
Rh(kM, ·)

)
(λ) dk . (45)

Then [
FA(Rh)

]δ
i,j

= FA
(
(Rh)δi,j

)
(46)

Proof. By (41) we have

FA
(
(Rh)δi,j

)
(λ) =

∫
A

∫
K
〈δ(k−1)vi, vj〉Rh(kM, a)eiλ(log a) da dk . (47)

Since δ is unitary and v1, . . . , vd(δ) is an orthonormal basis, we obtain from (39):

|FA
(
(Rh)δi,j

)
(λ)| ≤

∫
A

∫
B
|Rh(b, a)| db da ≤ ‖h‖1,C .

This proves (43). To prove (44), we have by (20):

|Fh(λ, b)| ≤
∫
A

∫
N
|h(kan · o)|eρ(log a) da dn

≤
∫
A

(
eρ(log a)

∫
N
|h(kan · o)| dn

)
da

=
∫
A

(R|h|)(b, a) da .

Hence

|(Fh)δi,j(λ)| ≤
∫
B
|Fh(λ, b)| db

≤
∫
B

∫
A

(R|h|)(b, a) da db .

So (44) follows again from (39). Finally, (46) is a consequence of (47) and Fubini’s theorem, which
applies as Rh ∈ L1(B ×A). �

Corollary 4.4. Suppose h ∈ C∞c (X). Then for all i, j = 1, . . . , d(δ) and λ ∈ a∗[
FA(Rh)

]δ
i,j

(λ) = (Fh)δi,j(λ) . (48)

Proof. For h ∈ C∞c (X) we have FA ◦R = F . �

Proposition 4.5. Let C ≥ 0. Let δ ∈ K̂M and v1, . . . , vd(δ) be as above. Then for all h ∈ L1(X)C

FA
(
(Rh)δi,j

)
=
[
FA(Rh)

]δ
i,j

= (Fh)δi,j (49)

as functions on a∗. Consequently, F = FA ◦R on L1(X)C .

Proof. The first equality is a consequence of (46). For the second, let h ∈ L1(X)C , and let hn ∈
C∞c (X) be a sequence converging to h in L1(X)C . By (43), (44) and (46), for all i, j = 1, . . . , d(δ),
the sequences [FA(Rhn)]δi,j and (Fhn)δi,j converge in L∞(a∗) to [FA(Rh)]δi,j and (Fh)δi,j , respectively.
But [FA(Rhn)]δi,j = (Fhn)δi,j by Corollary 4.4. Hence [FA(Rh)]δi,j = (Fh)δi,j by uniqueness of the
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limit. Since this is true for all δ ∈ K̂M and every orthonormal basis v1, . . . , vd(δ) of the space of δ,
we conclude that F = FA ◦R on L1(X)C . �

We conclude this section by a remark on the convolution h×ψ of two elements in L1(X)C under
the additional assumption that ψ is K-invariant. Recall that the convolution of two sufficiently
regular functions f1 and f2 on X is the function f1×f2 defined on X by (f1×f2)◦π = (f1◦π)∗(f2◦π).
Here π : G→ X = G/K is the natural projection and ∗ denotes the convolution product of functions
on G. This convolution is not commutative.

Proposition 4.6. Let C ≥ 0 and let h, ψ ∈ L1(X)C . Suppose that ψ is K-invariant. Then
h× ψ ∈ L1(X)C . More precisely, we have∫

X
|(h× ψ)(x)|Ξ(x)eCσ(x) dx ≤ ‖h‖1,C‖ψ‖1,C .

Proof. In the following we shall employ the same symbol to denote a function on X and the
corresponding K-invariant function on G. By definition of convolution products on G,∫

G
(|h| ∗ |ψ|)(g)Ξ(g)eCσ(g) dg =

∫
G

∫
G
|h(g)||ψ(g′)|Ξ(gg′)eCσ(gg′) dg dg′

≤
∫
G
|h(g)||ψ(g′)|Ξ(gg′)eCσ(g)eCσ(g′) dg dg′

since σ(gg′) ≤ σ(g) + σ(g′) and C ≥ 0. Replacing g′ by kg′, k ∈ K, and using the K-invariance of
ψ and σ, the latter integral becomes∫

G

∫
G
|h(g)||ψ(g′)|Ξ(gkg′)eCσ(g)eCσ(g′) dg dg′ ,

which does not depend on k. Integration over K leads to∫
G

∫
G
|h(g)||ψ(g′)|Ξ(g)Ξ(g′)eCσ(g)eCσ(g′) dg dg′ = ‖h‖1,C‖ψ‖1,C

in view of the classical functional equation of spherical functions. �

4.3. The Beurling-type condition for the Schrödinger equation on X. In this section,
we shall prove Theorem 1.1. Recall that if ut = u(t, ·) is a solution of (S) with initial condition
f ∈ L2(X) satisfying ∫

X

∫
X
|f(x)||u(t0, y)|Ξ(x)Ξ(y)e

σ(x)σ(y)
2t0 dx dy < +∞ (50)

for some t0 > 0, then f, ut0 ∈ L1(X)C for some constant C > 0.

Proof of Theorem 1.1. Observe that, by applying an argument similar to that in the proof of
Lemma 4.1, we get∫

X

∫
X
|f(x)||u(t0, y)|Ξ(x)Ξ(y)e

σ(x)σ(y)
2t0 dx dy =

=
∫
G

∫
G
|f(g1 · o)||u(t0, g2 · o)|e−ρ(H(g1)+H(g2))e

σ(g1)σ(g2)
2t0 dg1 dg2. (51)

By (37), to prove that u(t, ·) = 0 for all t ∈ R, it is enough to prove that f = 0. But by Proposition
4.5, we have Ff = FA(Rf) as f ∈ L1(X)C for some C > 0. Since F is an isometry on L2(X), it
therefore suffices to prove that Rf = 0. For this, we shall prove that (Rh)δi,j = 0 for all δ ∈ K̂M

and i, j = 1, . . . , d(δ). This would complete the proof by the comments at the end of section 2.6.
12



By proceeding as in the proof of (38), we have∫
X

∫
X
|f(x)||u(t0, y)|Ξ(x)Ξ(y)e

σ(x)σ(y)
2t0 dx dy ≥

≥
∫
A

∫
B

∫
A

∫
B

(R|f |)(b1, a1)(R|ut0 |)(b2, a2)e
| log a1|| log a2|

2t0 da1 da2 db1 db2

≥
∫
A

∫
A

(∫
B
|Rf(b1, a1)|db1

)(∫
B
|Rut0(b2, a2)|db2

)
e
| log a1|| log a2|

2t0 da1 da2 .

By (41), this implies that∫
A

∫
A
|(Rf)δi,j(a1)||(Rut0)δi,j(a2)|e

| log a1|| log a2|
2t0 da1 da2 <∞ (52)

for all δ ∈ K̂M and i, j = 1, . . . , d(δ).
On the other hand, (37) together with (49) gives us

FA
(
(Rut)δi,j

)
(λ) = e−i(|λ|

2+|ρ|2)tFA
(
(Rf)δi,j

)
(λ) . (53)

Now, by Corollary 3.4, we obtain
(Rf)δi,j = 0

for all δ ∈ K̂M and i, j = 1, . . . , d(δ), concluding the result. �

Remark 4.7. Note that (51) give us the Beurling’s condition in group terms.

As an immediate corollary of Theorem 1.1, we obtain the following result for compactly supported
initial conditions.

Corollary 4.8. Let u(t, x) ∈ C(R : L2(X)) denote the solution of (S) with initial condition f ∈
L2(X). Suppose that f has compact support. If there is a time t0 > 0 so that u(t0, ·) has compact
support. Then f = 0 and hence u(t, ·) = 0 for all t ∈ R.

Proof. It suffices to observe that (1) is always satisfied if f and u(t0, ·) are compactly supported. �

Remark 4.9. For f ∈ L2(X) the Radon transform Rf(b, ·) as well as the K-types (Rf)δi,j appearing
in (53) need not be in L2(A). This can be easily seen for functions f satisfying Ff = FA(Rf).
Indeed the Euclidean Fourier transform is an isometric isomorphism of L2(A) onto L2(a∗). Ac-
cording to the Plancherel theorem, the image of L2(X) under the Helgason-Fourier transform is
L2(a∗+×B, |c(λ)|−2 dλ db). So Rf(b, ·) ∈ L2(A) for almost all b ∈ B provided L2(a∗, |c(λ)|−2 dλ) ⊂
L2(a∗, dλ). The latter condition depends on the Harish-Chandra’s c-function appearing in the
Plancherel measure. Using the properties of the gamma function, one can prove the asymptotic
behaviour

1
|c(λ)|2

�
∏
α∈Σ+

0

|〈λ, α〉|2
∏
α∈Σ+

0

(1 + |〈λ, α〉|)mα+m2α−2 . (54)

See e.g. [1], Lemma 1. Here f � g means that there exists positive constants C1 and C2 so that
C1g(λ) ≤ f(λ) ≤ C2g(λ) for all λ.

In the rank-one case, we have for instance the following result.

Lemma 4.10. Suppose dim a∗ = 1. Let h ∈ L2(a∗, |c(λ)|−2 dλ) be bounded on {λ ∈ a∗ : |λ| ≤ r}
for some r > 0. Then h ∈ L2(a∗, dλ).

Proof. The asymptotic formula (54) gives in this case: |c(λ)|−2 ≥ C for |λ| ≥ r. If h ∈ L2(a∗, |c(λ)|−2 dλ),
then h is square integrable with respect to the Lebesgue measure on {λ ∈ a∗ : |λ| ≥ r}. Hence
h ∈ L2(a∗, dλ), as it is bounded on the compact set {λ ∈ a∗ : |λ| ≤ r}. �
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The boundedness of Ff(b, ·) at λ = 0 for almost all b ∈ B is obtained under very weak assump-
tions on f . Recall for instance that for almost all b ∈ B, the function Ff(b, ·) is even holomorphic
in a tube around a∗. See section 2.5. Moreover, in this case Ff(b, ·) vanishes at infinity by Fatou’s
lemma for F . We can then prove that Rf ∈ L2(A) for f ∈ L1(X) ∩ L2(X) whenever the root
system satisfies the following conditions:

(C) Either there is no α ∈ Σ+
0 with multiplicity mα = 1, or 2α ∈ Σ+.

When condition (C) is met, then we have∏
α∈Σ+

0

(1 + |〈λ, α〉|)mα+m2α−2 ≥ C (55)

for all λ ∈ a∗. The result Rf ∈ L2(A) for f ∈ L2(X) ∩ L1(X) is then a consequence of the above
discussion and the following lemma.

Lemma 4.11. Let Σ be a root system satisfying condition (C). Suppose h ∈ L2(a∗, |c(λ)|−2 dλ) is
continuous and vanishes at infinity. Then h ∈ L2(a∗, dλ).

Proof. Set Π(λ) =
∏
α∈Σ+

0
〈λ, α〉. By Lemma 5 in [1], the set Ω1 = {λ ∈ a∗ : |Π(λ)| ≤ 1} has finite

Lebesgue measure. Let B1 = {λ ∈ a∗ : ‖λ‖ ≤ 1} and C1 = a∗ \B1. Write∫
a∗
|h(λ)|2 dλ =

∫
B1

|h(λ)|2 dλ+
∫

Ω1∩C1

|h(λ)|2 dλ+
∫

(a∗\Ω1)∩C1

|h(λ)|2 dλ .

The first integral is finite as h is continuous, hence bounded on the compact B1. The second integral
is also finite as h is continuous and vanishes at infinity, so it is bounded in C1, and Ω1 ∩ C1 is a
subset of Ω1, hence of finite measure. For the convergence of the third integral, we use condition
(C). In fact, condition (C) yields (55). Moreover, on a∗\Ω1, we have |Π(λ)| ≥ 1. Thus |c(λ)|−2 ≥ C
for all λ ∈ (a∗ \ Ω1) ∩ C1. Consequently,∫

(a∗\Ω1)∩C1

|h(λ)|2 dλ ≤ C−1

∫
(a∗\Ω1)∩C1

|h(λ)|2 dλ

|c(λ)|2
< +∞.

�

5. Applications

Let X be a Riemannian symmetric space of the noncompact type. In this section we collect
some uniqueness conditions for the solution of the Schrödinger equation (S) on X which can be
deduced from Theorem 1.1. They correspond to uncertainty principle conditions of Gelfand-Shilov
type, Cowling-Price type and Hardy type. These results are parallel to the classical results of
uncertainty principles for the Fourier transform on Rn. Recall from (17) that 0 < Ξ(x) ≤ 1 for all
x ∈ X.

Theorem 5.1 (Gelfand-Shilov type). Let u(t, x) ∈ C(R : L2(X)) be the solution of (S) with initial
condition f ∈ L2(X). Suppose there exists positive constants α, β and a time t0 > 0 so that∫

X
|f(x)|Ξ(x)e

αp

p
σp(x)

dx <∞ and
∫
X
|u(t0, x)|Ξ(x)e

βq

q
σq(x)

dx <∞ (56)

where 1 < p <∞ and
1
p

+
1
q

= 1 . If 2t0αβ ≥ 1, then f = 0 and hence u(t, ·) = 0 for all t ∈ R.

Proof. We have σ(x)σ(y)
2t0

≤ αβσ(x)σ(y) ≤ αp

p σ
p(x) + βq

q σ
q(y). The inequalities (56) imply then

Beurling’s condition (1). �
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Theorem 5.2 (Cowling-Price type). Let u(t, x) ∈ C(R : L2(X)) be the solution of (S) with initial
condition f ∈ L2(X). Suppose there exists positive constants a, b and a time t0 > 0 so that∫

X

(
|f(x)|eaσ2(x)

)p
dx <∞ and

∫
X

(
|u(t0, x)|ebσ2(x)

)q
dx <∞ (57)

where 1 ≤ p, q ≤ ∞. If 16t20ab > 1, then f = 0 and hence u(t, ·) = 0 for all t ∈ R.

Proof. Choose A,B so that 0 < A < a, 0 < B < b and 16t20AB > 1. Let p′ and q′ so that
1
p

+
1
p′

= 1

and
1
q

+
1
q′

= 1. Set eη(x) = eησ
2(x). Observe that, by (9) and (10), the function eη ∈ Lp(X) for

all p ∈ [1,+∞] if η < 0. Indeed, by K-invariance of σ,∫
X
|eη(x)|p dx ≤ c

∫
a+

epη|H|
2
δ(H) dH ≤ c

∫
a+

epη|H|
2+2ρ(H) dH <∞ .

By (17), Hölder inequality and the assumption,

‖fΞeA‖1 ≤ ‖feA‖1 ≤ ‖fea‖p‖e(A−a)‖p′ <∞ ,

‖u(t0, ·)ΞeB‖1 ≤ ‖u(t0, ·)eB‖1 ≤ ‖u(t0, ·)eb‖q‖e(B−b)‖q′ <∞ .

The stated result is then a consequence of Theorem 5.1 with p = q = 2, A = α2/2 and B = β2/2. �

Remark 5.3. Let ψ be a function on X satisfying ψ(x)eνσ
2(x) ∈ L∞(X) and ψ(x)−1eνσ

2(x) ∈ L∞(X)
for all ν < 0. Because of the strict inequality 16t20ab > 1 in Theorem 5.2, we can replace the
functions eησ

2(x), with η ∈ {a, b}, measuring the growth of f and ut0 , respectively, with ψ(x)eησ
2(x).

For instance, we can choose ψ(x) = Ξ(x)M (1 + σ(x))N for some fixed integers M and N . Similar
remarks apply to Corollary 5.4 and Theorem 5.5 below.

Corollary 5.4. Let u(t, x) ∈ C(R : L2(X)) be the solution of (S) with initial condition f ∈ L2(X).
Suppose there exists positive constants a, A, b, B and a time t0 > 0 so that for all x ∈ X

|f(x)| ≤ Ae−
ap

p
σp(x) and |u(t0, x)| ≤ B e−

bq

q
σq(x) (58)

where 1 < p <∞ and
1
p

+
1
q

= 1 . If 2t0ab > 1, then f = 0 and hence u(t, ·) = 0 for all t ∈ R.

Proof. Choose α, β so that 0 < α < a, 0 < β < b and 2t0αβ > 1. Then f and u(t0, ·) satisfy
(56). �

Theorem 5.5 (Hardy type). Let f be a measurable function on X so that there exists positive
constants A and α so that

|f(x)| ≤ Ae−ασ2(x) (59)
for all x ∈ X. Then f ∈ L2(X). Let u(t, x) ∈ C(R : L2(X)) be the solution of (S) with initial
condition f . Suppose, moreover, that there is a time t0 > 0 and positive constants B and β so that

|u(t0, x)| ≤ B e−βσ2(x) (60)

If 16αβt20 > 1, then u(t, ·) = 0 for all t ∈ R.

Proof. By the K-binvariance of σ and the integral formula (9) and (10), the growth condition on
f implies ∫

X
|f(x)|2 dx ≤ A2

∫
X
e−2ασ2(x) dx ≤ cA2

∫
a+

e−2α|H|2δ(H) dH

≤ cA2

∫
a+

e−2α|H|2+2ρ(H) dH <∞ .
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Thus f ∈ L2(X). The uniqueness property is a consequence of Corollary 5.4 with p = q = 2 and
α = a2/2, β = b2/2. �

Remark 5.6. Under the additional assumptions that f is K-invariant and G is endowed with a
complex structure, Theorem 5.5 was proven in [5] using the explicit expression of the elementary
spherical functions. In fact, the Euclidean reduction via Radon transform provides an elementary
proof of Theorem 5.5 for arbitrary X and f . Observe first that if h is a measurable function on
X and there is C > 0 for which |h(x)| ≤ Ae−Cσ

2(x) for all x ∈ X, then h ∈ L1(X) ∩ L2(X).
Suppose now that f and ut0 satisfy (59) and (60), respectively. Choose a, b so that 0 < a < α,
0 < b < β and 16abt20 > 1. By Proposition 1 in [23], there are constants A′, B′ > 0 so that for all
(H,x) ∈ a×B we have |Rf(x, expH)| ≤ A′ e−a|H|2 and |Rut0(x, expH)| ≤ B′ e−b|H|2 . By (37) and
the fact that F = FA ◦ R on L1(X), for all x ∈ B, we have that Rut(x, ·) is the solution of the
damped Schrödinger equation on A ≡ Rn with initial condition Rf(x, ·) ∈ L2(Rn) and damping
parameter |ρ|2. The Hardy type uniqueness theorem for the Schrödinger equation on Rn (Theorem
2 in [5]) yields then Rf(x, ·) = 0 for all x ∈ B. Since R is injective on L1(X), we conclude that
f = 0 and hence u(t, ·) = 0 for all t ∈ R.

In [5], the value t0 given in Theorem 5.5 by the inequality 16αβt20 > 1 was proven to be optimal.
Indeed, for the symmetric space X = SL(2,C)/SU(2), Chanillo gave the following example. Let
f be the function on X which agrees on the maximally flat geodesic submanifold A ≡ R with
the function e−x

2−ix2/4. Then f satisfies (59) with α = 1. The solution u(t, ·) of the Schrödinger
equation (S) with initial condition f is not identically zero even if it satisfies (60) for β = 1/16 at
t0 = (16αβ)−1/2 = 1. Thus the uniqueness property fails in this case for some α, β and t0 with
16αβt20 = 1.

In the rest of this section we provide additional information on the optimality of t0. We consider
some Hardy type uniqueness conditions which are slightly more restrictive than those stated in
Theorem 5.5. So they still imply that the solutions of (S) are identically zero provided the condition
16αβt20 > 1 holds. We then characterize the non-unique solutions in the case t0 = (16αβ)−1/2 under
the additional assumption that G is endowed with a complex structure and the initial condition f
is K-invariant.

Observe first that we can modify the right-hand side of the estimates in Theorem 5.5 by a suitable
positive bounded factor ψ without loosing the uniqueness property when 16αβt20 > 1. We choose
here ψ to be the function used by Harish-Chandra to control the decay of the elements in the K-
biinvariant L2-Schwartz space on G. See for instance [12], p. 256. Considered as a K-biinvariant
function on G, the function ψ is uniquely defined on G by the condition

ψ(expH) =
∏
γ∈Σ+

(
γ(H)

sinh γ(H)

)mγ/2
, H ∈ a. (61)

Then ψ is a positive K-invariant function on X which is bounded. More precisely, one can prove
that for suitable positive constants c1, c2 and nonnegative integers d1, d2 one has

c1Ξ(x)(1 + σ(x))−d1 ≤ ψ(x) ≤ c2Ξ(x)(1 + σ(x))d2

for all x ∈ X. The following result is then a consequence of Theorem 5.5.

Corollary 5.7. Let f be a measurable function on X and assume there exist positive constants A
and α so that

|f(x)| ≤ Aψ(x)e−ασ
2(x) (62)

for all x ∈ X. Then f ∈ L2(X). Let u(t, x) ∈ C(R : L2(X)) be the solution of (S) with initial
condition f . Suppose, moreover, that there is a time t0 > 0 and positive constants B and β so that

|u(t0, x)| ≤ B ψ(x)e−βσ
2(x) . (63)
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If 16αβt20 > 1, then u(t, ·) ≡ 0 for all t ∈ R.

Suppose now that G has a complex structure and f is a K-invariant function on X. A K-
invariant function on X can be identified with a W -invariant function on A = exp a ≡ a. Here,
as before, W denotes the Weyl group. In this identification, the space of K-invariant functions in
L2(X) corresponds to the space of W -invariants in L2(a, η2(H) dH), where

η(H) =
∏
γ∈Σ+

sinh γ(H) , H ∈ a . (64)

Moreover, the radial component on A+ ≡ a+ of the Laplace-Beltrami operator ∆ on X is
1

η(H)
(
∆a − |ρ|2

)
◦ η(H) (65)

where ∆a is the Laplace operator on a. If n = dim a and {Hj}nj=1 is an orthonormal basis of a

with respect to the inner product induced by the Killing form, then ∆a =
∑n

j=1 ∂(Hj)2. Because
of (65), ut = u(t, ·) is the solution to (S) with K-invariant initial condition f ∈ L2(X) if and only
if η(H)ut(H) is the solution of the damped Schrödinger equation (Sc) on a ≡ Rn with damping
parameter c = |ρ|2 and W -skew-invariant initial condition η(H)f(H).

When G admits a complex structure, all root multiplicities mγ are equal to 2. Writing ψ(H)
instead of ψ(expH), we therefore have

ψ(H) =
π(H)
η(H)

, H ∈ a ,

where
π(H) =

∏
γ∈Σ+

γ(H) .

Let α, β be two positive constants and let

f(x) = ψ(x)e−ασ
2(x)e−i

√
αβσ2(x) , x ∈ X .

Then f is a K-biinvariant function in L2(X). Considered as a function on A ≡ a, we have

f(H) =
π(H)
η(H)

e−α|H|
2
e−i
√
αβ|H|2 , H ∈ a .

Let u(t, x) be the solution of (S) with initial condition f . Then η(H)u(t,H) , H ∈ a, is the solution
of (Sc) with damping parameter |ρ|2 and initial condition η(H)f(H). Set t0 = (16αβ)−1/2. By (33)
and (34) we have for a constant C1 depending on t0

η(H)u(t0, H) = C1e
i
|H|2
4t0 ĥt0

( H
2t0

)
where

ht0(Y ) = π(Y )e−α|Y |
2
.

Since
ĥt0(H) = π(i∂)

(
e−α|Y |

2)∧ = C2π(i∂)e−
|H|2
4α

and 16t20α = β−1, we conclude that

η(H)u(t0, H) = C3e
i
|H|2
4t0 π(i∂)e−β|H|

2

where C3 is a constant depending on t0. Moreover, π(i∂) =
∏
γ∈Σ+ i∂(Hγ), where Hγ is the unique

element in a so that γ(H) = 〈Hγ , H〉 for all H ∈ a. Since ∂(Hγ)e−β|H|
2

= −2βγ(H)e−β|H|
2
, we

have π(i∂)e−β|H|
2

= P (H)e−β|H|
2

where P (H) is a polynomial of degree degP = deg π. Observe
17



that P (H)e−β|H|
2

is a constant multiple of e−i
|H|2
4t0 η(H)u(t0, H). Since η(H) is W -skew-invariant,

so is P (H). Hence π(H) divides P (H). Thus P (H) = cπ(H) for a constant c. Therefore

u(t0, H) = ct0
π(H)
η(H)

e−β|H|
2
e
i
|H|2
4t0

for all H ∈ a, i.e.

u(t0, x) = ct0ψ(x)e−βσ
2(x)e

i
σ2(x)
4t0

for all x ∈ X. Since f and ut respectively satisfy the estimates (62) and (63), the uniqueness
property in Corollary 5.7 fails when 16t20αβ = 1.

In fact, we shall prove in Theorem 5.9 below that the function f we just considered is (up to
constant multiples) the only function which can occur in the case 16t20αβ = 1. We shall derive this
property from the following equality case of Hardy’s theorem on Rn; see [25], Theorem 1.4.4.

Lemma 5.8. Suppose h is a measurable function on Rn that satisfies the estimates

|h(x)| ≤ C(1 + |x|2)me−a|x|
2

and |ĥ(ξ)| ≤ C(1 + |ξ|2)me−b|ξ|
2

with a, b > 0. When ab = 1
4 , then h(x) = P (x)e−a|x|

2
where P is a polynomial of degree ≤ 2m.

Theorem 5.9. Let X = G/K be a Riemannian symmetric space with G complex. Suppose f is a
K-invariant function on X satisfying (62). Let u(t, ·) be the solution of (S) with initial condition
f . Assume that u(t0, x) satisfies (63). If 16αβt20 = 1, then there exists a constant C so that

f(x) = C ψ(x)e−ασ
2(x)e−i

√
αβσ2(x) .

for all x ∈ X.

Proof. It remains to prove that if f and ut0 satisfy (62) and (63), respectively, then f(x) is a
constant multiple of ψ(x)e−ασ

2(x)e−i
√
αβσ2(x).

We know that η(H)ut(H) is the solution of the damped Schrödinger equation on a with damping
parameter |ρ|2 and initial condition η(H)f(H) ∈ L2(a, dH). Hence, by (33),

η(H)u(t0, H) = (γ|ρ|2,t0 ∗ η · f)(H) = Ct0e
i
|H|2
4t0 ĥt0

( H
2t0

)
where

ht0(H) = e
i
|H|2
4t0 η(H)f(H) .

Hence
|ht0(H)| = |η(H)f(H)| = |π(H)ψ(H)−1f(H)| ≤ A|π(H)|e−α|H|2

and ∣∣ĥt0( H2t0 )∣∣ = C−1
t0
|π(H)ψ(H)−1u(t0, H)| ≤ BC−1

t0
|π(H)|e−β|H|2 .

So
|ĥt0(ξ)| ≤ C ′t0 |π(ξ)|e−4t20β|ξ|2 .

Letm be the smallest integer such that 2m ≥ |Σ+|. Since |π(H)| ≤ C(1+|H|2)m and α(4t20β) = 1/4,
we obtain from Lemma 5.8 that ht0(H) = P (H)e−α|H|

2
where P (H) is a polynomial of degree

≤ 2m. Therefore ei
|H|2
4t0 η(H)f(H) = P (H)e−α|H|

2
. This equality shows that P (H) must be W -

skew-invariant, so divisible by π(H). Hence P (H) = q(H)π(H) for a W -invariant polynomial q(H)
so that deg q = degP −deg π ≤ 2m−|Σ+| ≤ 1. This is only possible when q(H) = C is a constant.

Thus f(H) = C π(H)
η(H) e

−i |H|
2

4t0 e−α|H|
2
, which proves the claim. �
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[16] Hörmander, Lars. A uniqueness theorem of Beurling for Fourier transform pairs. Ark. Mat. 29 (1991), no. 2,

237–240.
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