Bijective rigid motions of the 2D Cartesian grid - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Bijective rigid motions of the 2D Cartesian grid

Résumé

Rigid motions are fundamental operations in image processing. While they are bijective and isometric in R^2, they lose these properties when digitized in Z^2. To investigate these defects, we first extend a combinatorial model of the local behavior of rigid motions on Z^2, initially proposed by Nouvel and Rémila for rotations on Z^2. This allows us to study bijective rigid motions on Z^2, and to propose two algorithms for verifying whether a given rigid motion restricted to a given finite subset of Z^2 is bijective.
Fichier principal
Vignette du fichier
article.pdf (316.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01275598 , version 1 (24-02-2016)
hal-01275598 , version 2 (12-05-2016)

Identifiants

  • HAL Id : hal-01275598 , version 1

Citer

Kacper Pluta, Pascal Romon, Yukiko Kenmochi, Nicolas Passat. Bijective rigid motions of the 2D Cartesian grid. 19th international conference on Discrete Geometry for Computer Imagery, Apr 2016, Nantes, France. ⟨hal-01275598v1⟩
359 Consultations
352 Téléchargements

Partager

More