Partially observed optimal stopping problem for discrete-time Markov processes - Archive ouverte HAL
Article Dans Une Revue 4OR: A Quarterly Journal of Operations Research Année : 2017

Partially observed optimal stopping problem for discrete-time Markov processes

Résumé

This paper is dedicated to the investigation of a new numerical method to approximate the optimal stopping problem for a discrete-time continuous state space Markov chain under partial observations. It is based on a two-step discretization procedure based on optimal quantization. First,we discretize the state space of the unobserved variable by quantizing an underlying reference measure. Then we jointly discretize the resulting approximate filter and the observation process. We obtain a fully computable approximation of the value function with explicit error bounds for its convergence towards the true value fonction.
Fichier principal
Vignette du fichier
1602.04609v1.pdf (247.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01274645 , version 1 (17-02-2016)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Benoîte de Saporta, François Dufour, Christophe Nivot. Partially observed optimal stopping problem for discrete-time Markov processes. 4OR: A Quarterly Journal of Operations Research, 2017, 15, pp.277-302. ⟨10.1007/s10288-016-0337-8⟩. ⟨hal-01274645⟩
165 Consultations
269 Téléchargements

Altmetric

Partager

More