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Abstract

This paper is dedicated to the investigation of a new numerical method to approximate the
optimal stopping problem for a discrete-time continuous state space Markov chain under partial
observations. It is based on a two-step discretization procedure based on optimal quantization.
First,we discretize the state space of the unobserved variable by quantizing an underlying ref-
erence measure. Then we jointly discretize the resulting approximate filter and the observation
process. We obtain a fully computable approximation of the value function with explicit error
bounds for its convergence towards the true value fonction.
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1 Introduction

This paper is dedicated to the investigation of a new numerical method to approximate the optimal
stopping problem for a discrete-time continuous state space Markov chain under partial observa-
tions. This is known to be a difficult problem, but very important for practical applications.
Indeed, the usual approach when dealing with partially observed problems is to introduce the filter
or belief process, thus converting the problem into a fully observed one, at the cost of an infinite
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dimensional state space as the filter process is measure-valued. Thus, there is no straightforward
way to discretize the state space of the filter process, and one must often choose a balance between
the computational load and the accuracy of the approximation.

Unlike the huge literature on discrete state space optimal stopping problems, that on continuous
state space is scarce. The most relevant papers addressing this problem are [8, 9, 10]. In [8], the
authors do not propose an approximation of the value function, but only computable upper and
lower bounds. They do not require any particular assumptions on the Markov process apart from
being simulatable, however they do not provide convergence rates either. Our aim in this paper is
more ambitious as we want to construct a numerically tractable approximation of the value function
with a bound for the convergence rate. In [9], the authors compute an approximation of the value
function based on particle filtering and simulations of the chain trajectories. They assume that
all distributions have densities with respect to the Lebesgue measure, that the reward function is
convex, but again they don’t provide convergence rates for the approximation. Our approach is
more general as it allows the Markov chain kernel have a density with respect to a general product
of measures, not necessarily the Lebesgue measure, which may be more relevant for some applica-
tions where thresholds are involved, for instance. In [10], the authors propose to parametrize the
belief state with the exponential family to dramatically reduce its dimension, but they deal with
general control problems for infinite discounted cost and stationary policies that are not suitable
for optimal stopping problems.

In this paper we propose a new approach, inspired by [7] that addresses the optimal stopping
problem under partial observation for finite state space chains. The key idea of the authors is
to approximate simultaneously the filter and observation processes using a series of quantization
grids. Optimal quantization is an approximation procedure that replaces a continuous state space
variable X by a finite state space one X̂ optimally, in the sense that it minimizes the L2 norm
of the difference |X − X̂ |, see e.g. [5, 6] and references therein for more details and applications
to numerical probability. The quantization approach of [7] is especially efficient if the state space
of the unobserved variable is finite and small. One first simple idea to turn our continuous state
space problem into a discrete one is to discretize the state space of the unobserved variables using
a regular cartesian grid. However, to ensure precision this may require a huge number of points
and possibly useless computations if some areas of the state space are seldom visited. A better idea
is to use the same quantization approach as [7] to discretize the unobserved component. This will
ensure that the grids have more points in the areas of high density, and are dynamically adapted
with time. The state space of the unobserved variable would then be finite, but with time-varying,
making the discretization of the filter numerically intractable. Our approach attempts at taking the
advantages of both these ideas, while minimizing their drawbacks. Our approximation procedure is
in two steps. First, we discretize the state space of the unobserved variable by optimally quantizing
an underlying reference distribution. Thus we have a fixed finite state space for the unobserved
variable, and the points are optimally distributed to ensure precision at a minimal computational
cost. This yields an approximate filter process that is measure-valued, but can be seen as taking
values in a finite dimensional simplex. We then jointly quantize the approximate filter and obser-
vation processes. Throughout this procedure, we are able to compute an explicit upper bound for
the error, that goes to zero as the number of points in the quantization grids goes to infinity.

The paper is organized as follows. In Section 2, we state the optimal stopping problem under
partial observation we are intereted in approximating, and we give the equivalent completely ob-
served sequential decision making problem. In Section 3, we detail our two-step numerical scheme
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and evaluate the error bound. Section 4 is dedicated to a numerical example, and the most technical
results are postponed to an Appendix.

2 Problem formulation

We start with some general notation that will be in force throughout the paper. N is the set of
natural numbers including 0, N∗ = N − {0}, R denotes the set of real numbers, R+ the set of
non-negative real numbers, R∗

+ = R+ − {0}. For any (p, q) ∈ N
2 with p ≤ q, Jp; qK is the set

{p, p + 1, . . . , q}. Given x in the Euclidean space R
n,|x| will denote its Euclidean norm. Let IE

be the indicator function of a set E. Let E be a metric space where d denotes its associated
distance. Its Borel σ-algebra will be denoted by B(E) and P(E) is the set of probability measures
on (E,B(E)). The space of all bounded real-valued measurable function on E is denoted by B(E).
The space L(E) of all real-valued bounded Lipschitz continuous functions on E is equipped with

the norm ‖f‖L(E) = ‖f‖sup + Lf where ‖f‖sup = supx∈E |f(x)| and Lf = supx 6=y
|f(x)−f(y)|

d(x,y) and

L1(E) = {f ∈ L(E) : ‖f‖L(E) ≤ 1}. On P(E), let us introduce the distance dP defined by
dP(µ, ν) = supf∈L1(E)

{ ∫
E fdµ −

∫
E fdν

}
. The Dirac probability measure concentrated at x ∈ E

will be denoted by δx. If F is a metric space and v is a real-valued bounded measurable function
defined on E × F and γ is a probability measure on (E,B(E)) then by a slight abuse of notation
we write v(γ, y) =

∫
E v(x, y)γ(dx) for any y ∈ F .

2.1 Optimal stopping

In this section, we describe the optimal stopping problem we are interested in by using a weak
formulation. Consider X ∈ B(Rm), Y ∈ B(Rn), a stochastic kernel R on X× Y and a performance
function H ∈ B(X× Y).

Definition 2.1 The control is defined by the following term:

ℓ =
(
Ξ,G,Q, {Gt}t∈J0;N0K, {Xt,Yt}t∈J0;N0K, τ

)

•
(
Ξ,G,Q, {Gt}t∈J0;N0K

)
is a filtered probability space,

• {Xt,Yt}t∈J0;N0K is an X× Y-valued {Gt}t∈J0;N0K-Markov chain defined on
(
Ξ,G,Q

)
where R

is its associated transition kernel and δ(x,y) is its initial distribution,

• τ is a {GY
t }t∈J0;N0K-stopping time where GY

t = σ{Y0, . . . ,Yt}.

In this setting, Xt denotes the hidden variables and Yt the observed variables. Hence the stopping
decision τ depends only on the observations. The set of the previous controls is denoted by L and
EQ denotes the expectation under the probability Q. For a control ℓ ∈ L, the performance criterion
is given by

H(x,y, ℓ) = EQ
[
H(Xτ ,Yτ )

]
. (1)

In the previous expression, we write explicitly the dependence of the cost function on the initial
state of the Markov chain. The partially observed optimal stopping problem we are interested in
is to maximize the reward function H(x,y, ℓ) over L. The corresponding value function is thus

H(x,y) = sup
ℓ∈L

H(x,y, ℓ). (2)
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The aim of this paper is to propose a numerical approximation of H(x,y) that can be computed
in practice and derive bounds for the approximation error.

We make the following main assumptions on the parameters of the Markov chain and the
performance function. The first ones are mild and state that the transition kernel R of the Markov
chain has a density with respect to a product of reference probability measures, and that this
density is bounded with Lipschitz regularity. Assumption C is technical and more restrictive. It
states that the density should also be bounded from below. Finally we assume that the performance
function is also bounded and Lipschitz-continuous.

Assumption A. There exist λ ∈ P(X), ν ∈ P(Y) and an R+-valued measurable function r defined
on (X× Y)2 such that

(A1) for any (x, y) ∈ X×Y, B ∈ B(X), C ∈ B(Y)

R(B ×C|x, y) =
∫

B×C
r(u, v, x, y)λ(du)ν(dv),

(A2)

∫

X

|x|2+βλ(dx) <∞ for some β > 0.

Assumption B. There exist positive constants r and Lr such that

(B1) sup
(u,v,x,y)∈(X×Y)2

r(u, v, x, y) ≤ r

(B2) for any (u, v, x, y) ∈ (X× Y)2, (u′, x′, y′) ∈ X× X× Y

|r(u, v, x, y) − r(u′, v, x′, y′)| ≤ Lr

[
|u− u′|+ |x− x′|+ |y − y′|

]
.

Assumption C. There exists δ > 0 such that r(λ, v, x, y) ≥ δ−1 for any (v, x, y) ∈ Y× X× Y.

Assumption D. The function H belongs to L(X× Y).

Our approximation strategy is in three steps. First, we rewrite the problem as a sequential
decision-making problem for a fully observed Markov chain on P(X)× Y. Then we propose a first
approximation based on the discretization of the state space X by a finite grid ΓN

X . Finally, we use
a second approximation procedure to discretize the resulting Markov chain on P(ΓN

X)× Y.

2.2 Auxiliary completely observed control problem

As explained in the introduction, the standard approach to deal with partial observation is to intro-
duce the filter process and convert the problem into a fully observed one on an infinite dimensional
state space. In this section, we introduce the auxiliary completely observed control model M. We
follow closely the framework of Chapter 5 in [2]. The objective of this section is twofold. First,
we show that the optimal stopping problem introduced in Definition 2.1 is equivalent to a fully
observed optimization problem defined in terms of the control model M below. Second, we prove
that the value function H(x,y) defined in (2) can be obtained by iterating a Bellman operator.

As defined in [2], let us consider the Bayes’ operator Φ : Y × P(X) × Y 7→ P(X) given by

Φ(v, θ, y)(du) =
r(u, v, θ, y)

r(λ, v, θ, y)
λ(du) and the stochastic kernel S on P(X)× Y defined by

S(B × C|θ, y) =
∫

C
δΦ(v,θ,y)(B)R(X, dv|θ, y), (3)
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for any B ∈ B(P(X)), C ∈ B(Y) and (θ, y) ∈ P(X) × Y. For notational convenience, let us
introduce the real-valued function H (respectively, h) defined on X×Y×{0, 1}×{0, 1} (respectively,
X× Y× {0, 1}) by H(x, y, z, a) = H(x, y)I{(z,a)=(0,1)} (respectively, h(x, y, z) = H(x, y)I{z=0}).

Consider the following auxiliary model M :=
(
S,A, Q,H, h

)
where

(a) the state space is given by S = P(X) ×Y× {0, 1},

(b) the action space is A = {0, 1},

(c) the transition probability function Q is the stochastic kernel on S given S × A defined by
Q(B × C × D|θ, y, z, a) = S(B × C|θ, y)

[
δz(D)I{a=0} + δ1(D)I{a=1}

]
for any B ∈ B(P(X)),

C ∈ B(Y), D ⊂ {0, 1} and (θ, y, z, a) ∈ S× A,

(d) the cost-per-stage is H(θ, y, z, a) and the terminal cost is h(θ, y, z) for any (θ, y, z, a) ∈ S×A

(recalling the slight abuse of notation introduced at the end of Section 1).

The underlying idea is that the filtered trajectory is constructed recursively thanks to the Bayes
operator Φ, and the kernel S is the driving kernel of the Markov chain of the filter and observations.
The optimal stopping problem is then stated as a sequential decision making problem where at each
time step the controller may stop (action a = 1) or continue (action a = 0). The additional variable
z ∈ {0, 1} indicates whether the trajectory has already been stopped (z = 1) or not (z = 0).

Introduce Ω = S
N0+1, F its associated product σ-algebra and the coordinate projections Θt

(respectively Yt and Zt) from Ω to the set P(X) (respectively Y and {0, 1}). Let Πo be the set
of all deterministic past dependent control policies π = {πt}t∈J0;N0−1K where π0 is a measurable
A-valued function defined on Y × {0, 1} and πt is a measurable A-valued function defined on
(Y× {0, 1} ×A)t × Y× {0, 1} for t ∈ J1;N0K.

Consider an arbitrary policy π ∈ Πo. Define the action process {At}t∈J0;N0−1K by At =
πt(Y0, Z0, A0, . . . , Yt−1, Zt−1, At−1, Yt, Zt) for t ∈ J1;N0 − 1K and A0 = π0(Y0, Z0). Define Ft =
σ{Θ0, Y0, Z0, . . . ,Θt, Yt, Zt} for t ∈ J0;N0K. According to [2, 4], for an arbitrary policy π ∈ Πo

there exists a probability measure P π
(x,y) on

(
Ω,F

)
which satisfy

i) P π
(x,y)

(
(Θ0, Y0, Z0) ∈ B × C

)
= δδx(B)δy(C)δ0(D),

ii) P π
(x,y)

(
(Θt+1, Yt+1, Zt+1) ∈ B × C ×D|Ft

)
= Q(B × C ×D|Θt, Yt, Zt, At),

for any B ∈ B(P(X)), C ∈ B(Y), D ⊂ {0, 1}, and t ∈ J0;N0 − 1K.

The expectation under the probability P π
(x,y) is denoted by Eπ

(x,y). For a policy π ∈ Πo, the
performance criterion is given by

HM(x,y, π) = Eπ
(x,y)

[N0−1∑

t=0

H(Θt, Yt, Zt, At)
]
+ Eπ

(x,y)

[
h(ΘN0

, YN0
, ZN0

)
]
. (4)

The optimization problem consists in maximizing the reward function HM(x,y, π) over Πo and
the corresponding value function is

HM(x,y) = sup
π∈Πo

HM(x,y, π). (5)

It can be computed using dynamic programming. Consider the Bellman operator B defined on
B(P(X)× Y) by

Bf(θ, y) = max{H(θ, y), Sf(θ, y)}, (6)
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for f ∈ B(P(X) × Y). It should be clear that under Assumption D, B maps L(P(X) × Y) onto
B(P(X) × Y). For notational convenience, Bk denotes the k-th iteration of B recursively defined
by B0f = f , B1f = Bf and Bkf = B(Bk−1f) for k ∈ J2;N0K and f ∈ B(P(X) ×Y).

Theorem 2.2 Suppose Assumptions (A1), B and D hold. Then

H(x,y) = HM(x,y) = BN0H(δx,y). (7)

Proof: See Appendix A. ✷

3 Approximation results

We now build our approximation procedure for the value function HM(x,y). It is based on two
discretizations. First, we replace the continuous state space X of the hidden variable by a discrete
one ΓN

X with cardinal N . Thus, model M can be approximated by a similar sequential decision
making problem for a Markov chain on the finite dimensional state space P(ΓN

X) × Y. We then
discretize the latter Markov chain using time-dependent grids following the same procedure as
in [7]. In both steps, the discretization grids we use are quantization grids. They are especially
appealing because they are optimized so that there are more points in the areas of high density, and
they allow to control the discretization error in L2-norm as long as the underlying operators have
Lipschitz continuity properties. In this section, we first recall the basics of optimal quantization,
then present the two discretization steps and derive the discretization error.

3.1 Optimal quantization

Consider an R
d-valued random variable Z defined on a probability space (G,G,P) (with corre-

sponding expectation operator E) such that ‖Z‖2 <∞ where ‖Z‖2 denotes the L2-norm of Z. Let
N be a fixed integer. The optimal L2-quantization of the random variable Z consists in finding the
best possible L2-approximation of Z by a random variable ẐN on (G,G,P) taking at most N values
in R

d, which will be denoted by {z1N , . . . , zNN }. The asymptotic properties of the L2-quantization
are summarized in the following result (see, e.g., [1, Theorem 3]), which uses the notation pΓ(z) for
the closest neighbor projection of z ∈ R

d on a grid Γ = {z1, . . . , zN} ⊆ R
d.

Theorem 3.1 Let Z be an R
d-valued random variable on (G,G,P), and suppose that for some

ǫ > 0 we have E[|Z|2+ǫ] < +∞. Then

lim
N→∞

N2/d min
|Γ|≤N

‖Z − pΓ(Z)‖22 = Jd,2

∫

Rd

|hZ(u)|d/(2+d)(u)du,

where hZ(u) denotes the density of the absolutely continuous part of the distribution of Z with
respect to the Lebesgue measure on R

d, and J2,d is a universal constant.

Finally, let us mention that there exist algorithms that can numerically find, for a fixed N , the
quantization of Z (or, equivalently, the grid {z1N , . . . , zNN } attaining the minimum in Theorem 3.1
above and its distribution) as soon as Z is simulatable. Basically, the quantization grids for the
variable Z will have more points in the areas of high density, and fewer points in the areas of low
density for Z.
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3.2 First approximation

The main originality of our work is to propose a discretization of the state space X based on the
quantization of the reference measure λ defined in Assumption (A1). It greatly helps minimizing
the computational burden as only one grid is required, instead of a series of grids as one usually
does when trying to quantize accurately a Markov chain. In addition, we obtain bounds for the
error. However this come at a cost: in order to guarantee that the approximated transition kernel
is still a Markov kernel, the density r also appears in the denominator. This is why we need the
lower bound of Assumption C to control the error.

To build the approximation and evaluate the error thus entailed, we first quantize the reference
probability λ. Then we replace it by its quantized approximation λN in the definitions of kernels
R, S, the Bayes operator Φ and plug these approximations into the Bellman operator. We obtain
an approximate Bellman operator BN and our first approximation of the value function is build
by iterating BN , following Equation (7).

According to the previous discussion of Section 3.1, given an integer N , let X̂N be the optimal
L2-quantization of the random variable X with distribution λ on a probability space (G,G,P) (E[·]
will stand for the expectation associated to P). Let us denote by ΓN

X = {x1N , . . . , xNN} an optimal
grid. There is no loss of generality to assume that x1N = x. We write λN for the distribution of

X̂N , that is, λN (du) =
∑N

i=1 P(X̂N = xiN )δxi

N

(du) and

ǫN = ‖X − X̂N‖2

for the L2-quantization error between X and X̂N . Assume also the existence of a random variable
Y with distribution ν on (G,G,P).

We define the quantized approximations of kernels R and S by plugging-in λN as follows.
Consider the stochastic kernel RN on X× Y where

RN (B × C|x, y) =
∫

B×C

r(u, v, x, y)

r(λN , ν, x, y)
λN (du)ν(dv), (8)

for any (x, y) ∈ X × Y, B ∈ B(X), C ∈ B(Y). Note that the support of RN (·|x, y) is actually
ΓN
X × Y. Let us introduce the stochastic kernel SN on P(X)× Y defined by

SN (B ×C|θ, y) =
∫

C
δΦN (v,θ,y)(B)RN (X, dv|θ, y), (9)

where ΦN : Y× P(X) ×Y → P(X) given by

ΦN (v, θ, y)(du) =
r(u, v, θ, y)

r(λN , v, θ, y)
λN (du). (10)

Here again, ΦN actually maps Y×P(X)×Y onto P(ΓN
X ) and the support of SN (·|θ, y) is P(ΓN

X)×
Y. Next we define the approximated Bellman operator. Consider the operator BN defined on
B(P(X)× Y) by

BNf(θ, y) = max{H(θ, y), SNf(θ, y)} (11)

for f ∈ B(P(X) × Y). It should be clear that under Assumption D, BN maps B(P(X) × Y) onto
B(P(X)×Y) and B(P(ΓN

X)×Y) onto B(P(ΓN
X)×Y). For notational convenience, Bk

N denotes the
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k-th iteration of BN . The first approximate value function is then defined as the N0-iterate of BN

on H:
HM,N(x,y) = BN0

N H(δx,y). (12)

We now study the error induced by this discretization on the value function. To do so, we study
how the quantization error is propagated through the Bellman operator. We start with technical
results on the density of the Markov chain integrated with respect to λ and with respect to its
quantized approximation λN .

Lemma 3.2 For any (θ, y) ∈ P(X)× Y and N ∈ N such that ǫN ≤ 1

2Lr
, one has

1

r(λN , ν, θ, y)
≤ 2 and

∣∣∣1− 1

r(λN , ν, θ, y)

∣∣∣ ≤ 2LrǫN .

Proof: Clearly, we have
∣∣1 − r(λN , ν, θ, y)

∣∣ =
∣∣r(λ, ν, θ, y) − r(λN , ν, θ, y)

∣∣ ≤ LrǫN by using As-

sumption (B2) and so,
1

r(λN , ν, θ, y)
≤ 2 for N ∈ N satisfying ǫN ≤ 1

2Lr
. Therefore,

∣∣∣1− 1

r(λN , ν, θ, y)

∣∣∣ ≤ 1

r(λN , ν, θ, y)

∣∣r(λ, ν, θ, y)− r(λN , ν, θ, y)
∣∣ ≤ 1

r(λN , ν, θ, y)
LrǫN ,

giving the result. ✷

Lemma 3.3 Suppose Assumption C holds. For any (θ, y) ∈ P(X) × Y and N ∈ N such that

ǫN ≤ 1

2δLr
, one has

1

r(λN , v, θ, y)
≤ 2δ.

Proof: The proof is similar to the one of Lemma 3.2 and is therefore, omitted. ✷

Lemma 3.4 Suppose Assumptions B and C hold. For any θ ∈ P(X) and N ∈ N such that
ǫN ≤ 1

2δLr
, one has

sup
y∈Y

dP
(
Φ(Y, θ, y),ΦN (Y, θ, y)

)
≤ δ

[
(2δ + 1)Lr + r

]
ǫN .

Proof: Consider f ∈ L1(X). We have

∣∣∣
∫

X

f(x)Φ(v, θ, y)(dx) −
∫

X

f(x)ΦN(v, θ, y)(dx)
∣∣∣ ≤ E

[∣∣∣f(X)
r(X, v, θ, y)

r(λ, v, θ, y)
− f(XN )

r(XN , v, θ, y)

r(λN , v, θ, y)

∣∣∣
]

≤ E

[
|f(XN )|r(XN , v, θ, y)

∣∣∣ 1

r(λ, v, θ, y)
− 1

r(λN , v, θ, y)

∣∣∣
]

+ E

[ |f(X)|
r(λ, v, θ, y)

∣∣r(X, v, θ, y)− r(XN , v, θ, y)
∣∣
]

+ E

[r(XN , v, θ, y)

r(λ, v, θ, y)
|f(X)− f(XN )|

]
.

By using Assumptions (B1) and C, it follows that

∣∣∣
∫

X

f(x)Φ(v, θ, y)(dx)−
∫

X

f(x)ΦN (v, θ, y)(dx)
∣∣∣

≤ rE
[∣∣∣ 1

r(λ, v, θ, y)
− 1

r(λN , v, θ, y)

∣∣∣
]
+ δLrǫN + δrǫN . (13)
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However, for N ∈ N satisfying ǫN ≤ 1
2δLr

we get from Lemma 3.3 that

∣∣∣ 1

r(λ, v, θ, y)
− 1

r(λN , v, θ, y)

∣∣∣ ≤ 1

r(λ, v, θ, y)r(λN , v, θ, y)
LrǫN ≤ 2δ2LrǫN

and with equation (13), this shows the result. ✷

We now need to ensure that both B and BN operate on L(P(X)× Y).

Lemma 3.5 Suppose Assumptions B, C and D hold. For any θ, θ′ ∈ P(X), y, y′ ∈ Y, N ∈ N and
f ∈ L(P(X) × Y) one has Bf ∈ L(P(X) × Y).

Proof: Consider f ∈ L(P(X) ×Y) and (θ, y), (θ′, y′) ∈ P(X)× Y. On the one hand,

|Bf(θ, y)| ≤ max{|H(θ, y)|; |Sf(θ, y)|}

≤ max

{
‖H‖L(P(X)×Y);

∫

X×Y

∣∣f
(
Φ(y′, θ, y), y′

)∣∣ r(x′, y′, θ, y)λ(dx′)ν(dy′)
}

≤ max
{
‖H‖L(P(X)×Y); ‖f‖L(P(X)×Y)

}
. (14)

On the other hand,

|Sf(θ, y)− Sf(θ′, y′)| ≤ E
[∣∣f

(
Φ(Y, θ, y), Y

)∣∣ ∣∣r(X,Y, θ, y)− r(X,Y, θ′, y′)
∣∣]

+ E
[
r(X,Y, θ′, y′)

∣∣f
(
Φ(Y, θ, y), Y

)
− f

(
Φ(Y, θ′, y′), Y

)∣∣]

≤ ‖f‖L(P(X)×Y)(r + Lr)[dP (θ, θ
′) + |y − y′|]

+ r‖f‖L(P(X)×Y)E
[
dP(Φ(Y, θ, y),Φ(Y, θ

′, y′))
]
. (15)

Let now g ∈ L1(P(X) × Y) and v ∈ Y. Then, one has
∣∣∣∣
∫

X

g(u)Φ(v, θ, y)(du) −
∫

X

g(u)Φ(v, θ′, y′)(dy)

∣∣∣∣

≤ E

[
|g(X)|

∣∣∣∣
r(X, v, θ, y)

r(λ, v, θ, y)
− r(X, v, θ′, y′)

r(λ, v, θ′, y′)

∣∣∣∣
]

≤ E

[
1

r(λ, v, θ, y)
|r(X, v, θ, y) − r(X, v, θ′, y′)|

]

+ E

[
r(X, v, θ′, y′)

∣∣∣∣
1

r(λ, v, θ, y)
− 1

r(λ, v, θ′, y′)

∣∣∣∣
]

≤ δ(r + Lr)(1 + δr)[dP (θ, θ
′) + |y − y′|] (16)

by using assumptions B and C. So, one has

E
[
dP(Φ(Y, θ, y),Φ(Y, θ

′, y′))
]
≤ δ(r + Lr)(1 + δr)[dP (θ, θ

′) + |y − y′|]. (17)

Then, by using assumption D, it is straightforward to write

|Bf(θ, y)−Bf(θ′, y′)| ≤ |H(θ, y)−H(θ′, y′)|+ |Sf(θ, y)− Sf(θ′, y′)|
≤ LBf [dP (θ, θ

′) + |y − y′|] (18)

with
LBf = ‖H‖L(P(X)×Y) + ‖f‖L(P(X)×Y)(r + Lr)

(
1 + δr(1 + rδ)

)
. (19)

Thus, Bf is bounded and Lipschitz-continuous on P(X) × Y.
✷
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Proposition 3.6 Suppose Assumptions A, B and C hold. Let N ∈ N satisfying ǫN ≤ 1
2Lr

(1 ∧ 1
δ ),

∣∣Bf(θ, y)−BNf(θ, y)
∣∣ ≤ ‖f‖L(P(X)×Y)K1ǫN (20)

for any (θ, y) ∈ P(X)× Y and f ∈ L(P(X)× Y) with

K1 = Lr(1 + 2rLr) + δr
[
r + Lr(2 + 2δr)

]
. (21)

Proof: Consider (θ, y) ∈ P(X)× Y and f ∈ L(P(X) × Y). Clearly, we have

∣∣Bf(θ, y)−BNf(θ, y)
∣∣ ≤

∣∣Sf(θ, y)− SNf(θ, y)
∣∣.

By using the definition of S and SN (see equations (3) and (9) respectively), we have

∣∣Sf(θ, y)− SNf(θ, y)
∣∣ ≤ E

[∣∣∣f(Φ(Y, θ, y), Y )r(λ, Y, θ, y)− f(ΦN (Y, θ, y), Y )
r(λN , Y, θ, y)

r(λN , ν, θ, y)

∣∣∣
]

≤ E

[
r(λ, Y, θ, y)

∣∣∣f(Φ(Y, θ, y), Y )− f(ΦN (Y, θ, y), Y )
∣∣∣
]

+ E

[∣∣f(ΦN (Y, θ, y), Y )
∣∣∣∣r(λ, Y, θ, y)− r(λN , Y, θ, y)

∣∣
]

+ E

[
r(λN , Y, θ, y)

∣∣f(ΦN(Y, θ, y), Y )
∣∣
∣∣∣1− 1

r(λN , ν, θ, y)

∣∣∣
]
.

Consequently, it follows that

∣∣Bf(θ, y)−BNf(θ, y)
∣∣ ≤ r‖f‖L(P(X)×Y)E

[
dP

(
Φ(Y, θ, y),ΦN (Y, θ, y)

)]

+ ‖f‖L(P(X)×Y)LrǫN + r‖f‖L(P(X)×Y)

∣∣∣1− 1

r(λN , ν, θ, y)

∣∣∣.

By using Lemma 3.4 and 3.2, we get the result. ✷

We can now state and prove the main result of this section bounding the error between the true
value function and its quantized approximation.

Theorem 3.7 Suppose Assumptions A, B, C and D hold. Let N ∈ N satisfying ǫN ≤ 1
2Lr

(1 ∧ 1
δ ).

Then, one has

∣∣HM(x,y) −HM,N (x,y)
∣∣ ≤ K1ǫN

N0−1∑

k=0

‖BkH‖L(P(X)×Y). (22)

Proof: First let us show by induction that

∣∣Bkf(θ, y)−Bk
Nf(θ, y)

∣∣ ≤ K1ǫN

k−1∑

j=0

‖Bjf‖L(P(X)×Y) (23)

for any (θ, y) ∈ P(X) × Y, f ∈ L(P(X) × Y) and k ∈ J1;N0K. From Proposition 3.6, the claim is
true for k = 1. Now, assume that equation (23) holds for k ∈ J1;N0 − 1K. Then,

∣∣Bk+1f(θ, y)−Bk+1
N f(θ, y)

∣∣ ≤
∣∣B(Bkf)(θ, y)−BN (Bkf)(θ, y)

∣∣

+
∣∣BN (Bkf)(θ, y)−BN (Bk

Nf)(θ, y)
∣∣. (24)
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From equation (20), Lemma 3.5 and recalling the definition of BN (see equation (11)) we get

∣∣Bk+1f(θ, y)−Bk+1
N f(θ, y)

∣∣ ≤ ‖Bkf‖L(P(X)×Y)K1ǫN +
∣∣SN(Bkf)(θ, y)− SN (Bk

Nf)(θ, y)
∣∣. (25)

Now, combining (9) and the induction hypothesis we have

∣∣SN (Bkf)(θ, y)− SN (Bk
Nf)(θ, y)

∣∣ ≤
∫

Y

∣∣∣Bkf(ΦN (v, θ, y), v) −Bk
Nf(ΦN (v, θ, y), v)

∣∣∣RN (X, dv|θ, y)

≤ K1ǫN

k−1∑

j=0

‖Bjf‖L(P(X), (26)

and so from equations (24)-(26) we obtain that (23) holds for any k ∈ J1;N0K. Finally, recalling
that HM(x,y) = BN0H(δx,y) and HM,N (x,y) = BN0

N H(δx,y), we obtain the result by applying
(23) to f = H with k = N0 since H ∈ L(P(X)× Y) by Assumption D. ✷

3.3 Second approximation

The approximate value function HM,N (x,y) = BN0

N H(δx,y) is not directly computable as it in-
volves a recursion of functions defined on the continuous space P(ΓN

X ) × Y. In order to obtain a
numerically tractable recursion, one additional discretization procedure is required. We first intro-
duce the Markov chain ΨN with transition kernel SN , then rewrite the iteration of the Bellman
operators BN in terms of conditional expectations involving this chain, and finally propose and
approximation of the latter conditional expectations based on the quantization of the chain ΨN .
Following the idea of [7], instead of discretizing the two coordinates (filter and observations) sepa-
rately, we discretize them jointly exploiting the Markov property of ΨN .

Let us denote by {ΨN
t }t∈J0;N0K the Markov chain with transition kernel SN and initial distribu-

tion (δx,y). By definition of SN we have that SN (P(ΓN
X) × Y|θ, y) = 1 for any (θ, y) ∈ P(X) × Y

and that δx ∈ P(ΓN
X). Moreover, it is clear that P(ΓN

X) can be identified with the N -simplex in R
N

denoted by S
N . Therefore, by a slight abuse of notation we will consider from now on that the state

space of the Markov chain {ΨN
t }t∈J0;N0K is given by S

N × Y ⊂ R
N+n. For notational convenience,

the stochastic kernel associated with {ΨN
t }t∈J0;N0K will still be denoted by SN . Thus, our aim is now

to rewrite the Bellman operator BN in terms of conditional expectations involving {ΨN
t }t∈J0;N0K,

discretize this Markov chain using optimal quantization and see how the approximation error is
propagated through the dynamic programming recursion.

First, we rewrite the dynamic programming recursion on functions (12) as a recursion involving
conditional expectations. By a slight abuse of notation, we write

H(ψ) =

N∑

j=1

γjH(xjN , y), (27)

for ψ = (γ, y) ∈ S
N × Y. Define recursively the sequence of real-valued functions {V N

t }t∈J0;N0K on

S
N × Y by

V N
t (ψ) = max

{
H(ψ),E

[
Vt+1(Ψ

N
t+1)

∣∣ΨN
t = ψ

]}
(28)

for t ∈ J0;N0 − 1K and V N
N0

(ψ) = H(ψ) for ψ ∈ S
N × Y. Note that these dynamic programming

equations now go backward in time, with an initialisation at the terminal time N0. By definition of

11



the operator BN (see equation 11), we have clearly V N
0 (ΨN

0 ) = BN0

N H(δx,y) and so by Theorem
3.7, V N

0 (ΨN
0 ) = HM,N (x,y). Thus one just needs to build a numerically computable approxima-

tion of function V N
0 .

Let {Ψ̂N,M
t = (Θ̂N,M

t , Ŷ
N,M
t )}n∈J0;N0K be the quantization approximation of {ΨN

t }t∈J0;N0K defined

on a probability space (G,G,P) (E[·] will stand for the expectation associated to P). There are
several methods to get the quantization of a Markov chain such as the marginal quantization
or Markovian quantization approaches. These techniques are roughly speaking based upon the
quantization of a random variable as described in section 3.1. We do not want to go into the
details of these different approaches. A rather complete exposition of this subject can be found in
[1, 5]. We write ΓM

ΨN
t

for the grid of M points used to quantize ΨN
t and ‖ΨN

t − Ψ̂N,M
t ‖2 for the L2-

quantization error between ΨN
t and Ψ̂N,M

t under P. Define recursively the sequence of real-valued

functions {V̂ N,M
t }t∈J0;N0K by

V̂
N,M
t (ψ̂) = max

{
H(ψ̂),E

[
V̂

N,M
t+1 (Ψ̂N

t+1)
∣∣Ψ̂N

t = ψ̂
]}
,

for any ψ̂ ∈ ΓM
ΨN

t

, t ∈ J0;N0 − 1K and V̂
N,M
N0

(ψ̂) = H(ψ̂) for ψ̂ ∈ ΓM
ΨN

N0

. As {Ψ̂N,M
t } is now a

(inhomogeneous) Markov chain on a finite state space, the conditional expectations above are just
weighted sums and can be computed numerically. Before stating the main result of this section
regarding the convergence of V̂ N,M

t to V̂ N
t , we need additional technical results on the Lipschitz

regularity of V N and V N,M .

Lemma 3.8 Suppose Assumptions A, B, C and D hold. Let N ∈ N satisfying ǫN ≤ 1
2Lr

(1 ∧ 1
δ ).

Then V N
t ∈ L(SN × Y) and ‖V N

t ‖sup ≤ ‖H‖sup for t ∈ J0;N0K. Moreover, one has

LV N
t

≤ 4
√
N
[
(1 + 2r)‖H‖sup + 2rδ(1 + 2rδ)LV N

t+1

]
(r + Lr) + 2

√
N(‖H‖sup + LH) (29)

for t ∈ J0;N0 − 1K and LV N

N0

≤ 2
√
N(‖H‖sup + LH).

Proof: According to equation (27), it is clear that ‖V N
N0

‖sup ≤ ‖H‖sup = sup(x,y)∈X×Y |H(x, y)|.
Moreover, for ψ = (γ, y) and ψ′ = (γ′, y′) in S

N × Y

|V N
N0

(ψ) − V N
N0

(ψ′)| ≤ (‖H‖sup + LH)
[ N∑

j=1

|γj − γ′j |+
∣∣y − y′

∣∣
]

≤ ‖H‖L(SN×Y)

[√
N |γ − γ′|+

∣∣y − y′
∣∣
]
≤ 2

√
N‖H‖L(SN×Y)|ψ − ψ′|,

giving the Lipschitz constant of V N
N0

.

Now, by a slight abuse of notation, ΦN (Y, γ, y) is identified with the vector in S
N which the

jth component is given by ΦN (Y, γ, y)(xNj ) and r(XN , Y, γ, y) (respectively, r(λN , ν, γ, y)) denotes
N∑

j=1

γjr(XN , Y, x
N
j , y) (respectively,

N∑

j=1

γjr(λN , ν, x
N
j , y)).

12



Consider g ∈ L(SN × Y) and ψ = (γ, y), ψ′ = (γ′, y′) in S
N × Y. For any t ∈ J0;N0 − 1K, we have

∣∣∣E
[
g(ΨN

t+1)
∣∣ΨN

t = ψ
]
− E

N
[
g(ΨN

t+1)
∣∣ΨN

t = ψ
]∣∣∣ =

∣∣SNg(γ, y) − SNg(γ
′, y′)

∣∣∣

≤ E

[∣∣∣g(ΦN (Y, γ, y), Y )
r(λN , Y, γ, y)

r(λN , ν, γ, y)
− g(ΦN (Y, γ′, y′), Y )

r(λN , Y, γ
′, y′)

r(λN , ν, γ′, y′)

∣∣∣
]

≤ E

[ |g(ΦN (Y, γ, y), Y )|
r(λN , ν, γ, y)

∣∣r(λN , ν, γ, y) − r(λN , ν, γ
′, y′)

∣∣
]

+ E

[
|g(ΦN (Y, γ, y), Y )|r(λN , ν, γ′, y′)

∣∣∣ 1

r(λN , ν, γ, y)
− 1

r(λN , ν, γ′, y′)

∣∣∣
]

+ E

[r(λN , Y, γ′, y′)
r(λN , ν, γ′, y′)

|g(ΦN (Y, γ, y), Y )− g(ΦN (Y, γ′, y′), Y )|
]
. (30)

By using Lemma 3.2 and Assumption B we have

E

[ |g(ΦN (Y, γ, y), Y )|
r(λN , ν, γ, y)

∣∣r(XN , ν, γ, y)− r(XN , ν, γ
′, y′)

∣∣
]

≤ 2‖g‖sup(r + Lr)
[ N∑

j=1

|γj − γ′j|+
∣∣y − y′

∣∣
]
≤ 2‖g‖sup(r + Lr)

[√
N |γ − γ′|+

∣∣y − y′
∣∣
]
. (31)

Similarly,

E

[
|g(ΦN (Y, γ, y), Y )|r(λN , ν, γ′, y′)

∣∣∣ 1

r(λN , ν, γ, y)
− 1

r(λN , ν, γ′, y′)

∣∣∣
]

≤ E

[
|g(ΦN (Y, γ, y), Y )| r(λN , ν, γ

′, y′)

r(λN , ν, γ, y)r(λN , ν, γ′, y′)

∣∣∣r(λN , ν, γ, y)− r(λN , ν, γ
′, y′)

∣∣∣
]

≤ 4‖g‖supr(r + Lr)
[√

N |γ − γ′|+
∣∣y − y′

∣∣
]
, (32)

and

E

[r(λN , Y, γ′, y′)
r(λN , ν, γ′, y′)

|g(ΦN (Y, γ, y), Y )−g(ΦN (Y, γ′, y′), Y )|
]

≤ 2rLgE
[∣∣ΦN (Y, γ, y)− ΦN (Y, γ′, y′)

∣∣]. (33)

Moreover, from the definition of the discrete measure ΦN (see equation (10))

E
[∣∣ΦN (Y, γ, y) − ΦN (Y, γ′, y′)

∣∣] ≤ E

[( N∑

j=1

λN (xjN )2
∣∣∣
r(xjN , Y, γ, y)

r(λN , Y, γ, y)
− r(xjN , Y, γ

′, y′)

r(λN , Y, γ′, y′)

∣∣∣
2)1/2]

≤ sup
(u,v)∈ΓN

X
×Y

∣∣∣ r(u, v, γ, y)
r(λN , v, γ, y)

− r(u, v, γ′, y′)

r(λN , v, γ′, y′)

∣∣∣

≤ sup
(u,v)∈ΓN

X
×Y

[ 1

r(λN , v, γ, y)

∣∣∣r(u, v, γ, y) − r(u, v, γ′, y′)
∣∣∣
]

+ sup
(u,v)∈ΓN

X
×Y

[
r(u, v, γ′, y′)

∣∣∣ 1

r(λN , v, γ, y)
− 1

r(λN , v, γ′, y′)

∣∣∣
]
,

and so, from Lemma 3.3

E
[∣∣ΦN (Y, γ, y)− ΦN (Y, γ′, y′)

∣∣] ≤ 2δ(1 + 2rδ) sup
(u,v)∈ΓN

X
×Y

∣∣∣r(u, v, θ, y)− r(u, v, θ′, y′)
∣∣∣

≤ 2δ(1 + 2rδ)(r + Lr)
[√

N |γ − γ′|+
∣∣y − y′

∣∣
]
. (34)
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Combining equations (30)-(34), we obtain

∣∣∣E
[
g(ΨN

t+1)
∣∣ΨN

t = ψ
]
− E

N
[
g(ΨN

t+1)
∣∣ΨN

t = ψ
]∣∣∣ =

∣∣SNg(γ, y)− SNg(γ
′, y′)

∣∣∣

≤ 4
√
N
[
(1 + 2r)‖g‖sup + 2rδ(1 + 2rδ)Lg

]
(r + Lr)

∣∣ψ − ψ′
∣∣.

Finally, by using the definition of V N
t (see equation (28)), we get (29) showing the result. ✷

We now state and prove the main result of this section.

Theorem 3.9 Suppose Assumptions A, B, C and D hold. Let N ∈ N satisfying ǫN ≤ 1
2Lr

(1 ∧ 1
δ ).

Then

∣∣HM,N(x,y) − V̂
N,M
0 (Ψ̂N,M

0 )
∣∣ ≤

N0∑

t=0

LV N
t

‖ΨN
t − Ψ̂N,M

t ‖2.

Proof: The proof of this result is based on Theorem 2 in [1]. The main difference is that in our
setting, the transition kernel of Markov chain {ΨN

t }t∈J0;N0K is not K-Lipschitz in the sense of the
definition (2.13) in [1]. However, the main arguments of the proof of Theorem 2 in [1] can still be
applied to show that

∥∥V N
t (ΨN

t )− V̂
N,M
t (Ψ̂N,M

t )
∥∥
2
≤ LV N

t

∥∥ΨN
t − Ψ̂N,M

t

∥∥
2
+

∥∥V N
t+1(Ψ

N
t+1)− V̂

N,M
t+1 (Ψ̂N,M

t+1 )
∥∥
2
,

for t ∈ J0;N0 − 1K and

∥∥V N
N0

(ΨN
0
)− V̂

N,M
N0

(Ψ̂N,M
N0

)
∥∥
2
≤ LV N

N0

∥∥ΨN
N0

− Ψ̂N,M
N0

∥∥
2
,

where LV N
t

are given in Lemma 3.8. This implies that

∣∣V N
0 (ΨN

0 )− V̂
N,M
0 (Ψ̂N,M

0 )
∣∣ ≤

N0∑

t=0

LV N
t

‖ΨN
t − Ψ̂N,M

t ‖2.

Moreover, one has V N
0 (ΨN

0 ) = HM,N(x,y) giving the result. ✷

Gathering together our three main results Theorems 2.2, 3.7, and 3.9, we obtain that the fully
computable expression V̂

N,M
0 (Ψ̂N,M

0 ) is an approximation of our initial value function of interest
H(x,y) with an error bound of

∣∣H(x,y) − V̂
N,M
0 (Ψ̂N,M

0 )
∣∣ ≤ K1ǫN

N0−1∑

k=0

‖BkH‖L(P(X)×Y) +

N0∑

t=0

LV N
t

‖ΨN
t − Ψ̂N,M

t ‖2,

that goes to zero as the number of points in the quantization grids goes to infinity.

4 Numerical example

In this section, we present a numerical example to illustrate our approximation results. It is adapted
from the control of water tank problems which can be found in [3, section 1.3]. Such applications
are essential in regions under high water stress.
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Consider a water tank which capacity K > 0 is finite. It is filled with a random amount of
rainfall each time it rains. However, the water level is only known through noisy measurements.
One wants to cover the tank when the volume of water is closest to some value α ∈ (0;K). Let
us model this situation with a [0;K]2-valued finite-horizon Markov chain (X̃t, Ỹt)t∈J0;N0K, where

(X̃t) represents the sequence of water volumes contained in the tank and (Ỹt) symbolizes the
measurements of (X̃t). We suppose that the dynamics of the Markov chain is given by

{
X̃t+1 = min

{
(X̃t + ξt)+;K

}

Ỹt+1 = min
{
(X̃t+1 + ψt)+;K

}

where x+ stands for the positive part of a real number x, and (ξt) and (ψt) are i.i.d. random
variables with respective densities f on R+ and g on R. Let us denote respectively F and G the
cumulative distribution functions associated to f and g. Let B,C ∈ B([0;K]). The cost function is
H̃(x, y) = K − |x− α| so that the process is optimally stopped when the (unobserved) component
X̃t is close or equal to α. The transition law of this process is

R̃(B × C|x, y) = δ0(B)F (−x)M1(C) +

∫

B
f(ξ − x)M2(C, ξ)dξ + δK(B)M3(C)

where

M1(C) = δ0(C)G(0) +

∫

C
g(ψ)dψ + δK(C)(1 −G(K)),

M2(C, ξ) = δ0(C)G(−ξ) +
∫

C
g(ψ − ξ)dψ + δK(C)(1−G(K − ξ)),

M3(C) = δ0(C)G(−K) +

∫

C
g(ψ −K)dψ + δK(C)(1−G(0)).

Assumption B does not hold when [0;K] is endowed with the usual Euclidian norm because the
points 0 and K have a nonzero weight. Thus we change the topology to isolate these two points
by adding an additional dimension to the process.

Consider the process (X 1
t ,X

2
t ,Yt)t∈J0;N0K, where X 1

t = X̃t, Yt = Ỹt and the dynamics of X 2
t is

X 2
t+1 = I{X 1

t+1
=K} − I{X 1

t+1
=0}.

So, the unobservable state space is X = ((0;K)×{0})∪ {(0,−1)} ∪ {(K, 1)}. The observable state
space is Y = [0;K]. Let H(x1, x2, y) = K − |x1 − α| be the performance function. One may now
write the transition law R of the process (X 1

t ,X
2
t ,Yt)t∈J0;N0K as

R(du1, du2, dv|x1, x2, y) = r(u1, u2, v, x1, x2, y)λ(du1, du2)ν(dv),

where r : (X ×Y)2 → R+ is defined by

r(u1, u2, v, x1, x2, y)

= 4I{(0,−1)}(u1, u2)F (−x1)m1(v) + 2KI(0;K)×{0}(u1, u2)f(u1 − x1)m2(u1, v)

+4I{(K,1)}(u1, u2)(1− F (K − x1))m3(v),

with

m1(v) = 4G(0)I{0}(v) + 2KI(0;K)(v)g(v) + 4(1−G(K))I{K}(v),

m2(u, v) = 4G(−u)I{0}(v) + 2KI(0;K)(v)g(v − u) + 4(1 −G(K − u))I{K}(v),

m3(v) = 4G(−K)I{0}(v) + 2KI(0;K)(v)g(v −K) + 4(1−G(0))I{K}(v),
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and

λ(du1, du2) =
δ0(du1)δ−1(du2)

4
+
µ(du1)δ0(du2)

2K
+
δK(du1)δ1(du2)

4
,

ν(dv) =
δ0(dv)

4
+
µ(dv)

2K
+
δK(dv)

4
,

where µ denotes the Lebesgue measure. One may note that neither λ nor ν are absolutely con-
tinuous with respect to the Lebesgue measure on [0;K]. Thus, this model does not satisfy the
assumptions of [8, 9, 10]. However, our Assumption A is clearly satisfied.

Assume that f is Lipschitz-continuous on [0;K] with constant Lf and g is positive and Lipschitz-
continuous on [−K;K] with constant Lg (e.g. if f is an exponential density function and g a centered
Gaussian density function, these hold). Therefore, they are both bounded above on these intervals,
respectively by ‖f‖sup and ‖g‖sup. Straightforward calculations show that assumptions B and D
hold with the following constants

r = (8 + 2K‖f‖sup)(8 + 2K‖g‖sup)

Lr = max
{
a, b,

8(8 + 2K‖g‖sup)
K + 2

, (8 + 2K‖g‖sup)(8‖f‖sup + 2KLf )
}
,

‖H‖L(X×Y) ≤ K + 1,

where
a = 2K(Lf (8 + 2K‖g‖sup) + ‖f‖sup(8‖g‖sup + 2KLg))

and
b = max

{
2K‖f‖sup(8‖g‖sup + 2KLg); (4 + 2K‖f‖sup + 2KLf )(8 + 2K‖g‖sup)

}
.

Assumption C requires that the density g be bounded from below by some positive number g on
[−K;K]. Thus, one has

m3(v) ≥ min{4G(−K); 2Kg; 4(1 −G(0))}.

As

r(λ, v, x1, x2, y) =

∫

X

r(u1, u2, v, x1, x2, y)λ(du1, du2) ≥ (1− F (K − x1))m3(v),

let us suppose that F (K) < 1, G(0) < 1 and G(−K) > 0. These are verified by exponential and
centered Gaussian density functions as above, for instance. One then deduces that

r(λ, v, x1, x2, y) ≥ (1− F (K))min
(
4G(−K); 2Kg; 4(1 −G(0))

)
> 0.

for all v, y ∈ Y and (x1, x2) ∈ X. Therefore, this shows that assumption C holds.

For our numerical experimentations, we chose N0 = 10, K = 1, α = 0.5, and the initial state
(X 1

0 ,X
2
0 ,Y0) = (0,−1, 0). We suppose that the ξt are exponentially distributed with parameter

5. We suppose that the ψt are normally distributed with mean 0 and standard deviation 0.03.
Following the method developed in this paper, we have performed the two quantizations by using
the competitive learning vector quantization algorithm (see section 2.2 of [6]). Table 1 displays the
approximation V̂

N,M
0 (Ψ̂N,M

0 ) of the value function at (0,−1, 0) according to the numbers N and
M of points in the quantization grids. The exact value function is not known, but as expected one
sees that our approximation is close to the optimal performance of 1.
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M N = 12 N = 25 N = 50 N = 100

125 0.9323 0.9534
250 0.9381 0.9579
500 0.9392 0.9577
1000 0.9404 0.9574
10000 0.9416 0.9578 0.9686 0.9771

Table 1: Approximation V̂ N,M
0 (Ψ̂N,M

0 ) of the optimal value according to M and N

Appendix A: Proof of Theorem 2.2

In order to prove Theorem 2.2, we need to introduce a new auxiliary control model M given by
the five-tuple

(
F,A, T,H, h

)
where

(a) the state space is F = X×Y× {0, 1},

(b) the action space is A = {0, 1},

(c) the transition probability function is given the stochastic kernel T on F given F× A defined
by T (B × C|x, y, z, a) = R(B × C|x, y)

[
δz(D)I{a=0} + δ1(D)I{a=1}

]
for any any B ∈ B(X),

C ∈ B(Y), D ⊂ {0, 1} and (x, y, z, a) ∈ F× A,

(d) the cost-per-stage H and the terminal cost h.

Define Ω = F
N0+1 and F its associated product σ-algebra. Introduce the coordinate projec-

tions Xt (respectively Yt, and Zt) from Ω to the set X (respectively Y, and {0, 1}). Con-
sider an arbitrary policy π ∈ Πo. Define recursively the action process {At}t∈J0;N0−1K by At =
πt(Y0,Z0,A0, . . . ,Yt−1,Zt−1,At−1,Yt,Zt) for t ∈ J1;N0 − 1K and A0 = π0(Y0,Z0). Define the
filtration {Ft}t∈J0;N0K by Ft = σ{X0,Y0,Z0, . . . ,Xt,Yt,Zt} for t ∈ J0;N0K. According to [2, 4],
there exists a probability measure Pπ

(x,y) on
(
Ω,F

)
satisfying

i) Pπ
(x,y)

(
(X0,Y0,Z0) ∈ B × C ×D

)
= δ(x,y)(B × C)δ0(D),

ii) Pπ
(x,y)

(
(Xt+1,Yt+1,Zt+1) ∈ B × C ×D|Ft

)
= T (B × C ×D|Xt,Yt,Zt,At),

for t ∈ J0;N0 − 1K, B ∈ B(X), C ∈ B(Y), D ⊂ {0, 1}.

The expectation under the probability Pπ
(x,y) is denoted by Eπ

(x,y). For a policy π ∈ Πo, the
performance criterion is given by

HM(x,y, π) = Eπ
(x,y)

[N0−1∑

t=0

H(Xt,Yt,Zt,At)
]
+Eπ

(x,y)

[
h(XN0

,YN0
,ZN0

)
]
. (35)

The optimization problem we are interested in is to maximize the reward function HM(x,y, π)
over Πo and HM(x,y) = supπ∈Πo HM(x,y, π). We first need to prove the following technical
lemma.

Lemma A.1 For any t ∈ J0;N0K,

σ{Y0,Z0, . . . ,Yt,Zt} = σ{Y0, . . . ,Yt}.
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Proof: Clearly, At is measurable with respect to σ{Y0,Z0, . . . ,Yt,Zt} for t ∈ J0;N0 − 1K. More-
over, from the definition of the transition kernel T , we obtain that Zt = I{At−1=1} +Zt−1I{At−1=0}

for any t ∈ J1;N0K. Recalling that Z0 = 0, it follows easily σ{Y0,Z0, . . . ,Yt,Zt} ⊂ σ{Y0, . . . ,Yt}
for t ∈ J0;N0K showing the result. ✷

The next result shows that the optimization problem defined through M is equivalent to the
initial optimal stopping problem defined in Definition 2.1.

Proposition A.2 The following assertions hold.
i) For any control ℓ ∈ L, there exist a policy π ∈ Πo such that

HM(x,y, π) = H(x,y, ℓ).

ii) For any policy π ∈ Πo, there exist a control ℓ ∈ L such that

H(x,y, ℓ) = HM(x,y, π).

Proof: Regarding item i), consider a control ℓ =
(
Ξ,G,Q, {Gt}t∈J0;N0K, {Xt,Yt}t∈J0;N0K, τ

)
in L.

On the probability space
(
Ξ,G,Q

)
, let us define the processes {At}t∈J0;N0−1K and {Zt}t∈J0;N0K by

At = I{τ≤t} and Zt = At−1 for t ∈ J1;N0K and Z0 = 0. Introduce the filtrations {Tt}t∈J0;N0K by

Tt = σ{X0,Y0,Z0,A0, . . . ,Xt,Yt,Zt,At} and {GY
t }t∈J0;N0K by GY

t = σ{Y0, . . . ,Yt}. Since τ is an

{GY
t }t∈J0;N0K-stopping time, we have Tt ⊂ Gt. Moreover, Zt+1 is Tt-measurable. Consequently, it

is easy to show that

Q
(
(Xt+1,Yt+1,Zt+1) ∈ B × C ×D|Tt

)
= I{Zt+1∈D}R(B × C|Xt,Yt).

We have {At = 1} = {Zt+1 = 1} and {At = 0} = {Zt+1 = 0} ⊂ {At−1 = 0} = {Zt = 0}, and so

Q
(
(Xt+1,Yt+1,Zt+1) ∈ B × C ×D|Tt

)
=
[
I{At=0}δ{Zt∈D} + I{At=1}δ1(D)

]
R(B ×C|Xt,Yt)

=T (B × C ×D|Xt,Yt,Zt,At). (36)

Now, there exists an A-valued measurable mapping πt defined on Y
t+1 satisfyingAt = πt(Y0, . . . ,Yt)

and so,

Q(At ∈ F |σ{Y0,Z0,A0, . . . ,Yt,Zt}) = δπt(Y0,...,Yt)(F ), (37)

for any t ∈ J0;N0 − 1K and F ⊂ A. Recall that

Q
(
(X0,Y0,Z0) ∈ B × C ×D

)
= δ(x,y)(B × C)δ0(D) (38)

for any B ∈ B(X), C ∈ B(Y), D ⊂ {0, 1}. Combining equations (36)-(38) and by the uniqueness
property in the Theorem of Ionescu-Tulcea (see, e.g. [4, Proposition C.10]), it follows that for the
control policy π = {πt}t∈J0;N0K

Q
(
(X0,Y0,Z0,A0, . . . ,XN0−1,YN0−1,ZN0−1,AN0−1,XN0

,YN0
,ZN0

) ∈ H
)

= Pπ
(x,y)

(
(X0,Y0,Z0,A0, . . . ,XN0−1,YN0−1,ZN0−1,AN0−1,XN0

,YN0
,ZN0

) ∈ H
)

(39)

for any H ∈ F .
Observe that for k ∈ J0;N0 − 1K we have {τ = k} = {Zk = 0} ∪ {Ak = 1} and {τ = N0} =

{ZN0
= 0}. Consequently,

E
Q

(x,y)

[
H(Xτ ,Yτ )

]
=

N0−1∑

t=0

E
Q

(x,y)

[
H(Xt,Yt)I{τ=t}

]
+E

Q

(x,y)

[
H(XN0

,YN0
)I{τ=N0}

]

=

N0−1∑

t=0

E
Q

(x,y)

[
H(Xt,Yt)I{(Zt ,At)=(0,1)}

]
+E

Q

(x,y)

[
H(XN0

,YN0
)I{ZN0

=1}

]
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Now, by using the definitions of H and h we get

E
Q

(x,y)

[
H(Xτ ,Yτ )

]
=

N0−1∑

t=0

E
Q

(x,y)

[
H(Xt,Yt,Zt,At)

]
+E

Q

(x,y)

[
h(XN0

,YN0
,ZN0

)
]
.

By using equation (39), it follows that

E
Q

(x,y)

[
H(Xτ ,Yτ )

]
=

N0−1∑

t=0

Eπ
(x,y)

[
H(Xt,Yt,Zt,At)

]
+Eπ

(x,y)

[
h(XN0

,YN0
,ZN0

)
]
,

showing the first claim.

Regarding item ii), let π be a policy in Πo. Then, on the probability space
(
Ω,F ,Pπ

(x,y)

)
,

{Xt,Yt}t∈J0;N0K is an {Ft}t∈J0;N0K-adapted Markov chain with transition kernel R and with ini-
tial distribution δ(x,y). Introduce the J0;N0K-valued random variable τ defined by

τ =

{
inf{k ∈ J0;N0 − 1K : Ak = 1} if {k ∈ J0;N0 − 1K : Xk = 1} 6= ∅,
N0 otherwise.

It follows from Lemma A.1 that τ is a stopping time with respect to
{
σ{Y0, . . . ,Yt}t∈J0;N0K

}

showing that the control λ defined by
(
Ω,F ,Pπ

(x,y), {Ft}t∈J0;N0K, {Xt,Yt}t∈J0;N0K, τ
)
belongs to Λ.

Recalling that Z0 = 0 and that Zt = I{At−1=1} + Zt−1I{At−1=0} for any t ∈ J1;N0K, we get that
{τ = t} = {Zt = 0} ∪ {At = 1} for t ∈ J0;N0 − 1K and {τ = N0} = {ZN0

= 0}. Now, by using the
definitions of H and h it follows that

N0−1∑

t=0

Eπ
(x,y)

[
H(Xt,Yt,Zt,At)

]
+Eπ

(x,y)

[
h(XN0

,YN0
,ZN0

)
]

=

N0−1∑

t=0

Eπ
(x,y)

[
H(Xt,Yt)I{(Zt,At)=(0,1)}

]
+Eπ

(x,y)

[
H(XN0

,YN0
)I{ZN0

=1}

]

= Eπ
(x,y)

[
H(Xτ ,Yτ )

]
,

implying that H(x,y, ℓ) = HM(x,y, π) and showing the second claim. ✷

Proof of Theorem 2.2 From Theorem 5.3.2 in [2] we get that HM(x,y) = HM(x,y) and so
from Proposition A.2, it follows that H(x,y) = HM(x,y) giving the first equality in equation (7).
Under Assumptions (A1), B and D, the hypotheses of Theorems 5.3.3 in [2] are satisfied. Therefore,
it follows that the Bellman equation {vk}k∈J0;N0K for the model M is given by

{
v0(θ, y, z) = h(θ, y, z)

vk(θ, y, z) = maxa∈A
{
H(θ, y, z, a) +Qvk−1(θ, y, z, a)

}

and satisfies HM(x,y) = vN0
(δx,y, 0). However, since h(θ, y, 1) = H(θ, y, 1) = 0, it easy to show

that vk(θ, y, 1) = 0 for any (θ, y) ∈ P(X) × Y and k ∈ J0;N0K. Moreover, by using the definitions
of h, H and the kernel Q we obtain that v0(θ, y, 0) = H(θ, y) and

vk(θ, y, 0) = max
a∈A

{
H(θ, y, 0, a) +Qvk−1(θ, y, 0, a)

}

= max
{
H(θ, y), Svk−1(θ, y)

}
= Bvk−1(θ, y)

for any (θ, y) ∈ P(X)× Y and k ∈ J1;N0K implying that HM(x,y) = BN0H(δx,y) and giving the
second equality in equation (7). ✷

19



References

[1] Vlad Bally, Gilles Pagès, and Jacques Printems. A quantization tree method for pricing and
hedging multidimensional American options. Math. Finance, 15(1):119–168, 2005.
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