Autonomous learning of parameters in differential equations - Archive ouverte HAL Access content directly
Conference Papers Year :

Autonomous learning of parameters in differential equations

Abstract

We propose EDEN+ 1 a fully automatic learner of parameters in dynamical systems that selects automatically the next experiment to do in the laboratory to improve its performance. EDEN+ improves upon EDEN, an experimental design algorithm proposed in the context of DREAM 6 and 7 challenges, with several new features: ability to take into account experiments with different costs, Monte-Carlo Tree Search parallelization, global optimization for parameter estimation. An illustration of the behaviour of EDEN+ is given on one of the DREAM7 challenging problems.
Fichier principal
Vignette du fichier
AutoML_soumis.pdf (340.83 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01272370 , version 1 (10-02-2016)

Identifiers

  • HAL Id : hal-01272370 , version 1

Cite

Adel Mezine, Artémis Llamosi, Véronique Letort, Michèle Sebag, Florence d'Alché-Buc. Autonomous learning of parameters in differential equations. 32nd International Conference on Machine Learning (ICML) - AutoML workshop, Jul 2015, Lille, France. ⟨hal-01272370⟩
1408 View
82 Download

Share

Gmail Facebook Twitter LinkedIn More