
HAL Id: hal-01272370
https://hal.science/hal-01272370v1

Submitted on 10 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous learning of parameters in differential
equations

Adel Mezine, Artémis Llamosi, Véronique Letort, Michèle Sebag, Florence
d’Alché-Buc

To cite this version:
Adel Mezine, Artémis Llamosi, Véronique Letort, Michèle Sebag, Florence d’Alché-Buc. Autonomous
learning of parameters in differential equations. 32nd International Conference on Machine Learning
(ICML) - AutoML workshop, Jul 2015, Lille, France. �hal-01272370�

https://hal.science/hal-01272370v1
https://hal.archives-ouvertes.fr


ICML 2015 AutoML Workshop

Autonomous learning of parameters in differential equations

Adel Mezine adel.mezine@ibisc.fr
Université d’Evry Val d’Essonne, IBISC, Evry, France

Artémis Llamosi artemis.llamosi@univ-paris-diderot.fr
Université de Paris Diderot, MSC, CNRS UMR 7057, Paris, France

Veronique Letort veronique.letort@ecp.fr
Ecole Centrale Paris, MAS, Châtenay-Malabry, France

Michèle Sebag michele.sebag@lri.fr
Université de Paris-Sud, LRI, CNRS UMR 8623, Orsay, France

Florence d’Alché-Buc florence.dalche@telecom-paristech.fr

Ecole Telecom ParisTech, LTCI, CNRS UMR 5141, Paris, France

Abstract

We propose EDEN+1 a fully automatic learner of parameters in dynamical systems that
selects automatically the next experiment to do in the laboratory to improve its perfor-
mance. EDEN+ improves upon EDEN, an experimental design algorithm proposed in the
context of DREAM 6 and 7 challenges, with several new features: ability to take into
account experiments with different costs, Monte-Carlo Tree Search parallelization, global
optimization for parameter estimation. An illustration of the behaviour of EDEN+ is given
on one of the DREAM7 challenging problems.

Keywords: active learning, system identification, Monte-Carlo Tree Search, multi-armed
bandits, gene regulatory networks, differential equations

1. Motivation

Discovery in science relies on the choice of appropriate experiments whose results allow
to refute or confirm working hypotheses. Machine learning can provide a precious help in
the laboratory not only by automatically analyzing the data at hand but also by making
suggestions to the experimenter about which data to acquire as already shown in King
et al. (2004). This is especially relevant in a biology lab where the cost of experiments
is very often prohibitive. Taking the example of dynamical modeling in systems biology,
we address the general problem of parameter estimation of differential equations together
with the experimental design in a sequential manner. Starting from an initial system of
parametric ordinary differential equations and an initial dataset, the EDEN+ algorithm
tackles this active learning problem as one player game where each move is a choice of a
single experiment (usually a perturbation experiment). The game is won if the parameters
and the hidden states are estimated with sufficient accuracy.

1. Experimental Design for parameter Estimation in a Network

c© 2015 A. Mezine, A. Llamosi, V. Letort, M. Sebag & F. d’Alché-Buc.



Mezine Llamosi Letort Sebag d’Alché-Buc

2. Problem description

We consider a dynamical system whose state at time t is the d-dimensional vector x(t)T =
[x1(t) . . . xd(t)] and whose dynamics are modeled by first-order ODE governed by a function
f depending on parameters θ and on an exogenous input u(t).

We partially observe its behavior given some initial condition x(0) = x0 and some
neutral input u(t) = g0(t), e.g. without any intervention (as defined below). Let H be the
observation model, typically a projection of IRd in a lower dimensional space IRp (p < d),
Y0 = (y0

tk
)k=0,...,n−1, a time series of n p-dimensional observations and (εtk)k=0,...,n−1, n

i.i.d realizations of a p-dimensional noise. For sake of simplicity, ytk (resp. εtk) will be noted
yk (resp. εk). Given these assumptions, the observations and the states of the system in
Quach et al. (2007) are expressed as follows: given k = 0, . . . , n− 1:

x(0) = x0

x(tk+1) = x(tk) +

∫ tk+1

tk

f(x(τ),u(τ),θ)dτ

yk = H(x(tk),u(t),θ) + εk . (1)

This model is a state-space model with the particularity that the hidden process is determin-
istic and computed using a numerical integration. Although nonlinear filtering approaches
such as Unscented Kalman Filtering (UKF) in Quach et al. (2007) and extended Kalman
Filtering (EKF) in Wang et al. (2009) can be applied, we will use here global maximization
algorithm of the log-likelihood. A major difficulty in parameter and hidden state estimation
is the practical non-identifiability of parameters. Namely, two different parameter solutions
can provide the same likelihood value. A well-known way to address this issue is to inter-
vene on the dynamical system to perform additional experiments producing observations
that exhibit different kinetics. It can consist either in perturbing the system, e.g. forcing
the level of a state variable to be zero, or in changing the observation model by allowing
to observe different state variables. To benefit from these new data during the estimation
phase, the ODE model must account for all the available experiments defined by a finite set
of size E: E = E0 = {e1, . . . , eE}. This can be done by defining adequately the exogenous
input u(t) among a set of intervention functions ge(t), e ∈ E as shown in the application
section.
Automatic selection of the appropriate interventions (experiments) to apply to the system
is the purpose of this work. We are especially interested in an active learning algorithm that
sequentially selects at each step `, the next experiment e∗` among the candidate experiments
of the set E` = E`−1 − {e∗`−1}, that will produce the most useful dataset for the estimation
task. Contrary to the purely statistical approaches of experimental design, ours aims at
offering the possibility to anticipate on the fact that one given experiment will be followed
by others. The search for an optimal e∗` ∈ E` thus depends on the potential subsequent
sequences of experiments, their total number being limited by a finite affordable budget
to account for the cost of real experiments. In this work, we improve a previous version
of the active learning algorithm EDEN presented in Llamosi et al. (2014) by increasing
considerably its autonomy and its scope of application.

2



EDEN+

3. Algorithm

As described in Llamosi et al. (2014) the EDEN algorithm consists mainly in three parts:
the estimation, the design of experiment (DOE) and the experimentation. The estimation
step aims at exploiting the current available data to learn the parameters of the model.
The design of experiment is automatically performed by an algorithm of the Monte-Carlo
Tree Search (MCTS) family that suggests a sequence of one or more experiments. The
experimentations are done with respect to the recommendations of the DOE procedure.
Algorithm 1 presents the improved version of EDEN.

Data: Budget: B; Initial data: D0; Design space: E ; Initial candidate parameters: Θ0.
Algo: Learner; Reward.
Input: Intermediate budget: b; Initial model: M0; Cost function: error() ;
Tree policy: φ; Recommendation: ψ; Number of tree walks: N ; Maximum tree depth: T ;
Size of the version space: NV S ; Rejection threshold: λ > 1.
Output: Θ̂.
budget← B
D ← D0

M←M0

while infe∈E price(e) ≤ budget do
V S = ∅

/* Building an empirical version space */

while card(V S) < NV S do

Θ̂← Learner(Θ0, M, D, error())

V S ← V S ∪
{
θ ∈ Θ̂ | ∀(Mi,Di) ∈M×D, error(Mi,Di,θ) < λ ·minθ(error(Mi,Di,θ)))

}
Θ0 ← Θ̂

end
/* Design of experiment based on Monte-Carlo Tree Search */

e←MCTS(φ, ψ, N , E , V S, Learner, min(b,B), horizon, reward())
De ← Experimentation(e) ; // In silico or in vivo experiment

Me ←Modeling(e)
D ← D ∪De
M← Fusion(M, Me)
E ← E\{e} ; // Replicated experiment are not considered

budget← budget− price(e)
end

Θ̂← Learner(Θ0, M, D, error())
return Θ̂

Algorithm 1: EDEN+

The EDEN+ algorithm requires a finite set of experiments E that are feasible in real
world and can be simulated by an appropriate model. A cost is associated to each experi-
ment, and a finite budget B > 0 is available. A prior is required to initialize the EDEN+
algorithm. Depending on the choice of the estimation algorithm, the prior can be formu-
lated either as a hypercube, that delimits the region of parameters to explore, a probability
distribution or a population of parameters. At each step the Learner updates this prior
Θ0.
The estimation phase aims at exploring the parameter space in order to extract a finite
subset of plausible parameter vectors called Version Space. It is essential that this set high-
lights any non-identifiability issues that may exist. Furthermore, it should exhibit a wide
spectrum of behaviours with respect to the next experiments that can be considered. In

3



Mezine Llamosi Letort Sebag d’Alché-Buc

order to solve the parameter estimation problem, we propose to use the global optimiza-
tion algorithm Cooperative Enhanced Scatter Search (CESS) introduced in Villaverde et al.
(2012). CESS is a metaheuristic approach that has shown good performances in various
problems as mentioned in Villaverde et al. (2015). The term Cooperative indicates that
we refer to the parallel implementation in which several threads run ESS in parallel and
synchronize regularly.

During the step of experimental design, the MCTS algorithm is applied to explore
efficiently the set of sequences of experiments from E thanks to a game tree. An intermediate
budget b and a horizon h are required to limit the depth of the tree search. A policy φ is
used to determine which experiment to select. In Kocsis and Szepesvári (2006), the Upper
Confident bound for Tree (UCT) uses the Upper Confident Bound (UCB) algorithm as
selection policy to deal with the exploration-exploitation trade-off. The version of MCTS

Input: Policy: φ; Recommendation: ψ; Number of tree walks: N ; Design space: E ;
Version Space: V S; Learner; Intermediate budget b; horizon; Reward
Output: Recommended experiment: e
tree = {root}
treewalk = 1
while treewalk < N do
A ← E
path = {root}
node = root
while (price(path) < b) ∧ (length(path) < horizon) do

a← φ(tree, path,A)
node← getNode(tree, path, a); // Void if the action has not associated node

if node = ∅ then
node← tree.addNode(path, a) ; // Add a child associated to the action

end
A ← A\{a} ; // Replicated experiment are not considered

path← path ∪ node
end
E ← getAction(tree, path, E)

r ←Reward(E, V S, E ,Learner)
/* Back-propagation of the reward through the visited path */

tree.backPropagate(path, r)

end
return e← ψ(tree, E)

Algorithm 2: MCTS: Monte-Carlo Tree Search

presented in Algorithm 2 has been adapted to allow considering that different experiments
can have different costs and thus stop the expansion of the tree search once the budget is
exhausted.
The parallelization is an efficient way to increase the power of the MCTS algorithm. Several
parallelization methods have been investigated in Gelly et al. (2008) and Chaslot et al.
(2008). There are mainly two approaches to parallelize MCTS. The first method is to use
a shared memory to store one version of the tree, and several threads explore the tree to
update it. The second method that has been chosen here (due to the way Matlab implements
multi-threaded applications) consists in building a tree per thread and synchronizing them
via messages. In our case, the time to compute the reward is larger than the time to update

4



EDEN+

the tree, thus the synchronization can be done frequently. In this way, the decisions taken
by the algorithm are always based on the most recent information.

4. Experimental result

EDEN+ has been confronted with the best competitor of the sub-challenge of parameter
inference in Dream7 Challenge, namely the orangeballs team in Meyer et al. (2014). Given
the topology and the underlying mechanistic model of an in silico 9-gene regulatory network,
the participants are asked to estimate the parameter vector and to predict the concentrations
of some proteins in specific conditions. The full model is given under the form of an
ordinary differential equation system that describes the evolution of the protein and mRNA
concentration in time associated to each gene.
The performance of the participants is evaluated using two scores Dparam and Dpred that are
respectively based on the parameter vector estimated and the protein timecourse prediction.
Dparam represents the error in order of magnitude between the true vector parameter θ∗

and the estimated θ̂.

Dparam(θ,θ∗) =
1

Nθ

Nθ∑
i=1

[
log

(
θ̂i
θ∗i

)]2

. (2)

Dpred is the normalized mean squared error between the prediction of three timecourse pro-
tein and the trajectories simulated with the true parameters for a given set of perturbations.

Dpred(θ,θ
∗) =

1

90

∑
k=3,5,8

40∑
i=1

[
pk(θ̂, ti)− pk(θ∗, ti)

]2

0.01 + 0.04 · pk(θ∗, ti)2
. (3)

In order to apply MCTS, a reward function is designed from the two scores to evaluate
the utility of the sequence of experiments explored. The reward consists in multiplying the
mean of reduction of each component of Dparam and Dpred computed between a surrogate
oracle θ∗ ∈ V S and θopt(Y ) = argminθ∈Rd error(M, Y ) the optimum outcome of the model
with respect to the available data Y .

reward(θ∗, Y0, Y1) =

(
1− Dparam(θ∗,θopt(Y0 ∪ Y1))

Dparam(θ∗,θopt(Y0))

)
·
(

1−
Dpred(θ

∗,θopt(Y0 ∪ Y1))

Dpred(θ
∗,θopt(Y0))

)
.

(4)
Figure 1 shows the evolution of the mean of the scores in the version space. The version

space in updated sequentially by adding one dataset at a time to set of observations. The
tree is explored with an horizon 3 that makes the algorithm looks ahead to reach a better
score in long term.

Table 1 shows the final scores obtained by EDEN+ and DREAM competitors whose
methods are described in Meyer et al. (2014). EDEN+ performance is comparable to the
first-rank team, with a better prediction score and no human intervention.

5. Implementation

We develop an implementation with the standard version of Matlab. The computation
time needed to play the full challenge is one week, using 12 cores of a 4 processors Intel

5



Mezine Llamosi Letort Sebag d’Alché-Buc

Figure 1: Evolution of the scores with h = 3, N = 20000, NV S = 5000.

Challenger Dparam Dpred

orangeballs 0.0229 0.0024

Team #341 0.8404 0.0160

Team #92 0.1592 0.0354

EDEN+ (h = 3) 0.0371 0.0016

Table 1: Comparison of the final scores on Dream 7 Model 1. Only the name of winner
orangeballs has been revealed. The results are shown for an horizon of 3 experi-
ments.

Xeon X5670 2.93GHz. The whole EDEN+ is entirely automated for in silico problem. The
simulations are performed using a numerical integration algorithm provided by the sundials
suite detailed in Hindmarsh et al. (2005). The optimization part of parameter inference
problem is performed by the MEIGO toolbox by Egea et al. (2014).

6. Conclusion

A very general algorithm has been developed for dynamical systems identification and ex-
perimental design. One of the most important features of this algorithm is its ability to
take into account the fact that an experiment is followed by other experiments and thus
to anticipate. Allowing for different experiment costs opens the door to real applications
and parallelism is helpful to reduce the computational load of exploration and estimation.
Working perspectives concern the extension of the approach to other learning problems
related to system biology.

6



EDEN+

References

Guillaume MJ-B Chaslot, Mark HM Winands, and H Jaap van Den Herik. Parallel monte-
carlo tree search. In Computers and Games, pages 60–71. Springer, 2008.

Jose A Egea, David Henriques, Thomas Cokelaer, Alejandro F Villaverde, Aidan Mac-
Namara, Diana-Patricia Danciu, Julio R Banga, and Julio Saez-Rodriguez. Meigo: an
open-source software suite based on metaheuristics for global optimization in systems
biology and bioinformatics. BMC bioinformatics, 15(1):136, 2014.

Sylvain Gelly, Jean-Baptiste Hoock, Arpad Rimmel, Olivier Teytaud, and Yann Kalemkar-
ian. On the parallelization of monte-carlo planning. In ICINCO, 2008.

Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban, Dan E
Shumaker, and Carol S Woodward. Sundials: Suite of nonlinear and differential/algebraic
equation solvers. ACM TOMS, 31(3):363–396, 2005.

Ross D King, Kenneth E Whelan, Ffion M Jones, Philip GK Reiser, Christopher H Bryant,
Stephen H Muggleton, Douglas B Kell, and Stephen G Oliver. Functional genomic hy-
pothesis generation and experimentation by a robot scientist. Nature, 427(6971):247–252,
2004.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Machine
Learning: ECML 2006, pages 282–293. Springer, 2006.

Artémis Llamosi, Adel Mezine, Florence d’Alché Buc, Véronique Letort, and Michele Sebag.
Experimental design in dynamical system identification: A bandit-based active learning
approach. In ECML/PKDD 2014, pages 306–321. Springer, 2014.

Pablo Meyer, Thomas Cokelaer, Deepak Chandran, Kyung H Kim, Po-Ru Loh, George
Tucker, Mark Lipson, Bonnie Berger, Clemens Kreutz, Andreas Raue, et al. Network
topology and parameter estimation: from experimental design methods to gene regulatory
network kinetics using a community based approach. BMC systems biology, 8(1):13, 2014.

Minh Quach, Nicolas Brunel, and Florence d’Alché Buc. Estimating parameters and hidden
variables in non-linear state-space models based on odes for biological networks inference.
Bioinformatics, 23(23):3209–3216, 2007.

Alejandro F Villaverde, Jose A Egea, and Julio R Banga. A cooperative strategy for
parameter estimation in large scale systems biology models. BMC systems biology, 6(1):
75, 2012.

Alejandro F Villaverde, David Henriques, Kieran Smallbone, Sophia Bongard, Joachim
Schmid, Damjan Cicin-Sain, Anton Crombach, Julio Saez-Rodriguez, Klaus Mauch, Eva
Balsa-Canto, et al. Biopredyn-bench: a suite of benchmark problems for dynamic mod-
elling in systems biology. BMC systems biology, 9(1):8, 2015.

Zidong Wang, Xiaohui Liu, Yurong Liu, Jinling Liang, and Veronica Vinciotti. An extended
kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via
short gene expression time series. IEEE/ACM TCBB, 6(3):410–419, 2009.

7


	Motivation
	Problem description
	Algorithm
	Experimental result
	Implementation
	Conclusion

