Non-parametric Ensemble Kalman methods for the inpainting of noisy dynamic textures - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Non-parametric Ensemble Kalman methods for the inpainting of noisy dynamic textures

Résumé

In this work, we propose a novel non parametric method for the temporally consistent inpainting of dynamic texture sequences. The inpainting of texture image sequences is stated as a stochastic assimilation issue, for which a novel model-free and data-driven Ensemble Kalman method is introduced. Our model is inspired by the Analog Ensemble Kalman Filter (AnEnKF) recently proposed for the assimilation of geophysical space-time dynamics, where the physical model is replaced by the use of statistical analogs or nearest neighbours. Such a non-parametric framework is of key interest for image processing applications, as prior models are seldom available in general. We present experimental evidence for real dynamic texture that using only a catalog database of historical data and without having any assumption on the model, the proposed method provides relevant dynamically-consistent interpolation and outperforms the classical parametric (autoregressive) dynamical prior.
Fichier principal
Vignette du fichier
icip2015.pdf (826.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01271173 , version 1 (08-02-2016)

Identifiants

Citer

Redouane Lguensat, Pierre Tandeo, Ronan Fablet, Pierre Ailliot. Non-parametric Ensemble Kalman methods for the inpainting of noisy dynamic textures. ICIP 2015 : IEEE International Conference on Image Processing, Sep 2015, Québec City, Canada. pp.2488-2492, ⟨10.1109/ICIP.2015.7351615⟩. ⟨hal-01271173⟩
160 Consultations
236 Téléchargements

Altmetric

Partager

More