Optimal transportation between hypersurfaces bounding some strictly convex domains
Résumé
Let $M,N$ be two smooth compact hypersurfaces of $\R^n$ which bound strictly convex domains equipped with two absolutely continuous measures $\mu$ and $\nu$ (with respect to the volume measures of $M$ and $N$). We consider the optimal transportation from $\mu$ to $\nu$ for the quadratic cost. Let $(\phi:m \to \R,\psi:N \to \R)$ be some functions which achieve the supremum in the Kantorovich formulation of the problem and which satisfy
$$ \psi (y) = \inf_{z\in M} \Bigl( \frac{1}{2}|y-z|^2 -\varphi(z)\Bigr); \\
\varphi (x)=\inf_{z\in N} \Bigl( \frac{1}{2}|x-z|^2 -\psi(z)\Bigr).$$
Define for $y \in N$,
$$\varphi^\Box(y) = \sup_{z\in M} \Bigl( \frac{1}{2}|y-z|^2 -\varphi(z)\Bigr).$$
In this short paper, we exhibit a relationship between the regularity of $\varphi^\Box$ and the existence of a solution to the Monge problem.
Domaines
Géométrie différentielle [math.DG]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...