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OPTIMAL TRANSPORTATION BETWEEN HYPERSURFACES

BOUNDING SOME STRICTLY CONVEX DOMAINS

E. HUMBERT AND L. MOLINET

Abstract. Let M,N be two smooth compact hypersurfaces of R
n which

bound strictly convex domains equipped with two absolutely continuous mea-
sures µ and ν (with respect to the volume measures of M and N). We con-
sider the optimal transportation from µ to ν for the quadratic cost. Let
(φ : m → R, ψ : N → R) be some functions which achieve the supremum
in the Kantorovich formulation of the problem and which satisfy

ψ(y) = inf
z∈M

(1

2
|y − z|2 − ϕ(z)

)

;ϕ(x) = inf
z∈N

(1

2
|x− z|2 − ψ(z)

)

.

Define for y ∈ N ,

ϕ2(y) = sup
z∈M

(1

2
|y − z|2 − ϕ(z)

)

.

In this short paper, we exhibit a relationship between the regularity of ϕ2 and

the existence of a solution to the Monge problem.

Let M and N be two smooth compact hypersurfaces of Rn, n ≥ 2, which are
the boundary of some strictly convex domains. In the present paper, we study the
existence of a solution of Monge Problem when considering the optimal transport
with quadratic cost between two measures µ and ν respectively supported in M
and N . This situations has been already studied: see [3]. In the whole paper, we
assume that µ and ν have the form µ = f(x)dv(x) and ν = g(y)dv(y) where f, g
are some non-zero nonnegative continuous functions on M and N and where dv
stands for the volume measures on M and N . The quadratic cost is defined for all
x, y ∈ R

n by c2(x, y) :=
1
2 |x− y|2. Here, | · | denotes the standard norm associated

to the canonical scalar product of Rn. For all x, y ∈ R
n, the scalar product of x

and y will be denoted by x · y.
The standard formulation of the optimal transport from µ to ν for the quadratic
cost is

T0 := inf
π∈Π′(µ,ν)

I ′0(π)

where Π′(µ′, ν′) is the set of probabilily measures π(·, ·) on R
n × R

n such that

π(Rn, ·) = ν and π(·,Rn) = µ

and for all π ∈ Π′(µ′, ν′),

I ′0(π) :=

∫

Rn×Rn

c2(x, y)dπ(x, y).

As easily checked, this is an equivalent formulation to write

T0 := inf
π∈Π(µ,ν)

I0(π)(0.1)

where Π(µ, ν) is the set of probabilily measures π(·, ·) on M ×N such that

π(M, ·) = ν and π(·, N) = µ
1
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and for all π ∈ Π(µ, ν),

I0(π) :=

∫

M×N

c2(x, y) dπ(x, y).

By the Monge-Kantorovich duality (see for instance, [5], [6]), one has

T0 = sup
(ϕ,ψ)∈Ω

J0(ϕ, ψ)(0.2)

where Ω is the set of couples of functions (ϕ, ψ) ∈ C0(M)× C0(N) such that

ϕ(x) + ψ(y) ≤ c2(x, y)

for all (x, y) ∈M ×N and where

J0(g, h) =

∫

M

g(x)dµ(x) +

∫

N

h(y)dν(y).

for all (g, h) ∈ C0(M)× C0(N).
Actually, in many situations, one can also show the uniqueness of π (see [1]).
It is standard to prove that (see for instance [1] for references):

(1) the infimum in (0.1) is attained by some probability measure π, which is
called a transference plan;

(2) the supremum in (0.2) is attained by some couple of functions (ϕ, ψ) which
satisfy for all x ∈M , y ∈ N :

(0.3) ψ(y) = inf
z∈M

(

c2(z, y)− ϕ(z)
)

;ϕ(x) = inf
z∈N

(

c2(x, z)− ψ(z)
)

In the whole paper, if η :M → R, we will note for all y ∈ N

η∗(y) = inf
x∈M

(

c2(x, y)− η(x)
)

.(0.4)

In the same way, if η : N → R, we will note for all x ∈M

η∗(x) = inf
y∈N

(

c2(x, y)− η(y)
)

,(0.5)

so that ϕ∗ = ψ and ψ∗ = ϕ.

An important question about (0.1) is the following : are the transference plans
associated with (0.1) supported in a graph ? Indeed, a positive answer to this
question would ensure the existence of a solution to the famous Monge problem
(see, for instance, [6] for some explanations). Unfortunately, the answer is no in its
full generality. Gangbo and McCann [3] could construct some counter examples.
Even worse: numerical computations indicate that this is not true either in the
simplest situation when M = N = S1 (for n ≥ 1, Sn denotes the unit sphere of
R
n+1) and when µ and ν have smooth positive densities (see [2]).
In this paper we try to give some simple criteria that would imply a positive

answer. Before, stating our result, we need to introduce some definitions.

For any fonction Θ :M → R, we set for all y ∈ N

Θ2(y) = sup
x∈M

(

c2(x, y)−Θ(x)
)

.(0.6)
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and in the same way, if Θ : N → R, we set for all x ∈M

Θ2(x) = sup
y∈N

(

c2(x, y)−Θ(x)
)

.(0.7)

While, as proven is [3], the function ϕ is always C1, the function ϕ2 has no reason
to be C1 in general but surprisingly, its regularity is directly related to the question
above. More precisely, our main result is

Theorem 0.1. For all y ∈ N , define Θy :M → R by

Θy(x) = c2(x, y)− ϕ(x)

so that, for y ∈ N , ϕ∗(y) = infM Θy and ϕ2(y) = supM Θy. Then, the following

assertions are equivalent:

(1) ϕ2 is C1;

(2) for all y ∈ N , the function Θy has exactly two critical points: its minimum

and it maximum.

If one of the assertions above is true then ϕ22 = ϕ∗∗ = ϕ. Moreover, the support

of π is contained in a graph.

The idea of the proof is as follows. Let Γ be the set of points x ∈M which are the
maximum of a function Θy for some y ∈ N . There is then two crucial observations:

(1) If (x, y) belongs to the support of π and if x ∈ Γ, then y is unique. This
implies that if Γ =M then the support of π is contained in a graph.

(2) Let x ∈ Γ, y ∈ N such that x is the maximum of Θy. Then, y is unique.
This allows to define a map T : Γ → N such that T (x) = y. The main
argument of the proof is to show that under the assumptions of Theorem
0.1, T is actually a homeomorphism, which implies that Γ =M and allows
to conclude.

Even if assumptions 1) or 2) are not easy to check, we think that this theorem gives
a new point of view, that we hope useful, to this Monge problem. For convenience
of the reader, we stated all the results which seem of particular interest to us in
Propositions 1.3, 1.4, 1.6. Theorem 0.1 is a direct consequence of these propositions.

1. Proof of Theorem 0.1

1.1. Notations and Preliminaries. We keep the notations of the introduction:
(ϕ, ψ) is a couple of functions maximizing the problem (0.2). By Gangbo and
McCann [3], these functions are C1. Indeed, in their paper Section 3, they show
that the convex functions they study are tangentially differentiable and that these
tangent differentials are continuous on M and N . Here, the function we consider
are the same functions restricted to M and N and are hence C1. Notice that the
proof of this fact is far to be obvious. In addition, the functions ϕ, ψ satisfy ϕ∗ = ψ
and ψ∗ = ϕ. We recall that for all y ∈ N , we defined Θy : M → R by

Θy(x) = c2(x, y) − ϕ(x).

In the same way, if x ∈M , we define Θx : N → R by

Θx(x) = c2(x, y)− ψ(x).

For x ∈M , y ∈ N , we introduce the sets:

Ωx := {z ∈ N /θx(z) = inf
z′∈N

θx(z
′) = ϕ∗(z) = ψ(z)}
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and

Ωy := {z ∈M /θy(z) = inf
z′∈M

θy(z
′) = ψ∗(z) = ϕ(z)}.

Note that, by compacity of M and N , these sets are non empty. Note also that

Ωx := {z ∈ N /ϕ(x)+ψ(z) = c2(x, z)} and Ωy := {z ∈M /ϕ(z)+ψ(y) = c2(z, y)}

which has the immediate consequence that

y ∈ Ωx ⇔ x ∈ Ωy ⇔ ϕ(x) + ψ(y) = c2(x, y).(1.1)

Now, proving that the support of π is contained in a graph of a continuous preserv-
ing map α : M → N (resp. α : N → M) is reduced to proving that for all x ∈ M
(resp. y ∈ N), the set Ωx (resp. Ωy) contains exactly one point. Indeed, by (0.1)
and (0.2), one has

∫

M×N

c2(x, y)dπ(x, y) =

∫

M

ϕ(x)dµ(x) +

∫

N

ψ(y)dν(y)

which can be rewritten, since the marginals of π are µ and ν, by

∫

M×N

(c2(x, y)− ϕ(x)− ψ(y)) dπ(x, y) = 0.

Since c2(x, y)− ϕ(x)− ψ(y) ≥ 0, one has identically on the support of π:

c2(x, y) = ϕ(x) + ψ(y)

and hence x ∈ Ωy or y ∈ Ωx.

For any y ∈ N we denote by nN (y) the unitary normal outside vector to N at y
and we define the line Dy by

Dy = y −∇ψ(y) + span(nN (y)) .

Similarly, for x ∈M we define the line Dx by

Dx = x−∇ϕ(x) + span(nM (x)) .

An easy computation of the derivative of Θy and Θx shows that if x ∈ M, y ∈ N ,
then

y ∈ Dx ⇔ ∇Θy(x) = 0 and x ∈ Dy ⇔ ∇Θx(y) = 0.(1.2)

Finally, we will use several times the following Lemma:

Lemma 1.1. For all x ∈M , y ∈ N , the functions Θx and Θy are never constant.

Proof. Assume for instance that Θy is constant. Then for any x ∈M , x ∈ Ωy and
hence, by (1.1), y ∈ Ωx. By (1.2), x ∈ Dy which implies that M is contained in the
right line Dx. This is impossible and Lemma 1.1 follows. �
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1.2. Properties of ϕ2. In the proof on Theorem 0.1, we will use some basic
properties of ϕ2. Many of them are very standard. We first recall its definition:

ϕ2(y) = sup
x∈M

(

c2(x, y)− ϕ(x)
)

.

For convenience, for any y ∈ N , we will denote by Ω2

y the set of points of M
achieving the maximum in the definition of ϕ2. We collect the properties we will
need in the following Proposition:

Proposition 1.2. (1) For all x ∈M , ty ∈ N , one has ϕ(x)+ϕ2(y) ≥ c2(x, y)
with equality if and only if x ∈ Ω2

y ;

(2) ϕ22 ≤ ϕ;
(3) ϕ2 is Lipschitz;

(4) ϕ222 = ϕ2;

(5) Let y ∈M . Assume that there is only one point such xy such that

ϕ2(x) = c2(xy , y)− ϕ(xy)

i.e. the supremum in the definition of ϕ2 is attained at only one point,

then ϕ2 is differentiable at y.

Proof. We start by proving 1). Let x ∈M and y ∈ N . It holds that

ϕ(x) + ϕ2(y) = ϕ(x) + sup
z∈M

(

c2(z, y)− ϕ(z)
)

≥ ϕ(x) + (c2(x, y)− ϕ(x)) = c2(x, y).

The inequality above becomes an equality if and only if x ∈ Ω2

y . This proves 1).

Let us now deal with 2). Let x ∈M . By definition:

ϕ22(x) = sup
y∈N

(c2(x, y)− ϕ2(y)).

By compacity of N , there exists yx ∈M such that

ϕ22(x) = c2(x, yx)− ϕ2(yx).(1.3)

By definition, one also have

ϕ2(yx) = sup
z∈M

(c2(z, yx)− ϕ(z)).

and, setting z = x, one has

ϕ2(yx) ≥ c2(x, yx)− ϕ(x).

Together with (1.3), this gives 2).

Let us prove 3). Let y, z ∈M , xy ∈ Ω2

y and xz ∈ Ω2

z . We prove that

1

2
(z + y − 2xy) · (z − y) ≥ ϕ2(z)− ϕ2(y)

≥
1

2
(z + y − 2xz) · (z − y).

(1.4)

The definition of Ω2

z implies that

ϕ2(z) = c2(xz , z)− ϕ(xz).
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The construction of ϕ2 implies that

ϕ2(y) ≥ c2(xz , y)− ϕ(xz).

Observing that

1

2
(z + y − 2xz) · (z − y) = c2(xz , z)− c2(xz , y),

this provides the right inequality of (1.4). The left inequality is proven in the same
way. Now, observe that since M,N are compact, there exists a constant C > 0
independant of y, z such that

1

2
|z + y − 2xz| ≤ C and

1

2
|z + y − 2xy| ≤ C.

Using that |z−y| is less than the geodesic distance onN , we immediatly deduce that
ϕ2 is lipschitz. Note that this implies that ϕ2 is continuous and by Rademacher’s
Theorem, is differentiable almost everywhere.

We now prove 4). By Point 2)

ϕ22 ≤ ϕ.

In particular, for all y ∈ N ,

ϕ222(y) = sup
x∈M

(c2(x, y)− ϕ22(x)) ≥ sup
x∈M

(c2(x, y)− ϕ(x)) = ϕ2(y).

For all x ∈M , y ∈ N , we also have as in Point 1)

ϕ22(x) + ϕ2(y) ≥ c2(x, y).

Then as in Point 2), ϕ222 = (ϕ2)22 ≤ ϕ2. This shows 4).

Let us finish by proving 5). Let y ∈ M and assume that Ω2

y is reduced to one
point x. Let (zk) be a sequence of points of N tending to y. For all k, choose
xk ∈ Ω2

zk
. By compacity of M , one can assume that xk converges to some x′ ∈M .

The definition of Ω2

zk
and Point 1) implies that

ϕ(xk) + ϕ2(zk) = c2(xk, zk).

By continuity of ϕ and ϕ2, we obtain as zk tends to y,

ϕ(x′) + ϕ2(y) = c2(x
′, y)

which proves that x′ ∈ Ω2

y and hence x′ = x Using (1.4), we have

1

2
(zk − y) · (zk + y − 2xk) ≥ ϕ2(zk)− ϕ2(y) ≥

1

2
(zk − y) · (zk + y − 2x).(1.5)

Until the end of the proof, the notation ok will stand for a term which is o(|zk−y|).
Since xk tends to x, we have

xk · (zk − y) = x · (zk − y) + ok.

When zk is close to y,

zk − y = Py(zk − y) + ok,

where Py denotes the orthogonal projection onto the tangent space TyN . Coming
back to (1.5), we obtain that

1

2
Py(zk− y) · (zk+ y− 2x)+ ok ≥ ϕ2(zk)−ϕ

2(y) ≥
1

2
Py(zk− y) · (zk+ y− 2x)+ ok.



OPTIMAL TRANSPORTATION BETWEEN HYPERSURFACES BOUNDING SOME STRICTLY CONVEX DOMAINS7

Since Py is self-adjoint, this yields

1

2
(zk− y) ·Py(zk+ y− 2x)+ ok ≥ ϕ2(zk)−ϕ

2(y) ≥
1

2
(zk− y) ·Py(zk+ y− 2x)+ ok.

Noticing that

lim
k
Py(zk + y − 2x) = 2Py(y − x)

and setting v := Py(y − x), it follows that

(zk − y) · v + ok ≥ ϕ2(zk)− ϕ2(y) ≥ (zk − y) · v + ok.

This ensures that for any sequence zk tending to y, one can extract a subsequence
such that

ϕ2(zk)− ϕ2(y)− v · (zk − y) = ok.

Since when zk tends to y, (zk − y) is equivalent to the geodesic distance from y to
zk in N , this proves that ϕ2 is differentiable and that ∇ϕ2(y) = v which completes
the proof of Proposition 1.2. �

1.3. Proof of Theorem 0.1. We define

Γ := {x ∈M / ∃y ∈ N , θy(x) = sup
x∈M

θy(x) = ϕ2(y)}

The first observation is the following:

Proposition 1.3. (Properties of the set Γ)

(1) The set Γ is closed;

(2) If x ∈ Γ then #Ωx = 1. In particular, if Γ = M , the support of π is

contained in a graph.

(3) For all x ∈ Γ, one has ϕ22(x) = ϕ(x) = ϕ∗∗(x).

Proof. Let us first show that Γ is closed: let (xn) ⊂ Γ be such that xn → x in
M . There exists (yn) ⊂ N such that for all n ∈ N, Θyn(xn) = maxM Θyn . Now,
let (ynk

) be a subsequence of (yn) that converges to some y ∈ N . Such subse-
quence exists by compactness of N . On the one hand, by the continuity of the map
z 7→ maxM Θz, we obtain that Θyn

k
(xnk

) = maxM θyn → maxM Θy. On the other

hand, we have Θyn
k
(xnk

) → Θy(x). Therefore Θy(x) = maxM Θy and thus x ∈ Γ.
This proves that Γ is closed.

Les us come to the proof of the second part of the statement. Let x ∈ Γ. By
definition of Γ, there exists y1 ∈ N such that x is a maximum for Θy1 . Assume
that #Ωx ≥ 2 and let also y2, y3 ∈ Ωx, y2 6= y3. Then, x ∈ Ωyi for i = 2, 3 and
then x is a minimum of Θyi i = 2, 3. By Equation (1.2), y1, y2, y3 ∈ Dx. Since N is
the boundary of a strictly convex domain, Dx intersects N at at most two points.
Since y2 6= y3, we must have y1 = y2 or y1 = y3. Let us assume for instance that
y1 = y2. This means that x is a minimum as well as a maximum of Θy1 which
forces Θy1 to be constant on M . By Lemma 1.1, this cannot occur.

Let us prove now the third part of the statement. For all x ∈ M , it holds that
ϕ∗∗(x) = ψ∗(x) = ϕ(x). By Proposition 1.2, ϕ22 ≤ ϕ. It thus remains to prove
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that if x ∈ Γ then ϕ22(x) ≥ ϕ(x). For such x, there exists y ∈ N such that

|x− y|2

2
− ϕ(x) = ϕ2(y) = ϕ222(y)

= sup
z∈M

( |z − y|2

2
− ϕ22(z)

)

≥
|x− y|2

2
− ϕ22(x)

≥
|x− y|2

2
− ϕ(x)

Here, we used the fact that ϕ222 = ϕ2, which is proven in Proposition 1.2. We then
must have equality in all the inequalities above which implies ϕ22(x) ≥ ϕ(x). �

We are now in position to define

T : Γ → N
x 7→ T (x)

such that ΘT (x)(x) = supM ΘT (x). Then,

Proposition 1.4. (Properties of the mapping T ) T is a well defined continuous

map which is surjective. Moreover, for all x ∈ Γ, the outer unit normal vector to

M at x and to N at T (x) satisfy:

nM (x) · nN (T (x)) < 0.

Proof. To show that T is well defined, we have to show that for all x ∈ Γ, there
exists one and only one y ∈ N such that Θy(x) = supM Θy. The existence of such y
is ensured by the fact that x ∈ Γ. Now, assume that y1 and y2 satisfy this relation.
Then, y1 and y2 must belong to the right line Dx (see Relation (1.2)). Moreover,
since Ωx is never empty, let y3 ∈ Ωx then again y3 ∈ Dx. Notice that y3 is distinct
from y1 and y2 otherwise Θy1 is constant which is prohibited by Lemma 1.1. Since
Dx intersects N at at most two points, y2 and y3 must be equal. This prove that
T is well defined.

The fact that T is surjective is obvious: if y ∈ N , we choose x ∈M , which is com-
pact, such that x is a maximum of Θy. The definition of T implies that T (x) = y.
Let us show the continuity of T . Let (xn) ⊂ Γ such that xn → x in Γ. By construc-
tion we have θT (xn)(xn) = maxM θT (xn). Now, let (xnk

) be a subsequence of (xn)
such that T (xnk

) converges to some y ∈ N . Obviously, proceeding as in the proof
of Proposition 1.3, Θy(x) = maxM Θy and thus y = T (x). Therefore T (x) is the
unique adherence point of the sequence (T (xn)) which ensures that T (xn) → T (x)
and proves the continuity of T .

Let us prove the last part of the statement of Proposition 1.4. Let x ∈ Γ and set
y = T (x). Since x a maximum for Θy, by (1.2), y ∈ Dx. Let also y

′ be a minimum
for Θx i.e. y′ ∈ Ωx. By (1.1), x is also a minimum for Θy′ which implies, by
(1.2), that y′ ∈ Dx. Moreover, y 6= y′ since otherwise this would imply that Θy
is constant which would contradict Lemma 1.1. Since N bounds a strictly convex
domain, Dx intersects N at at most two points which forces to have

Dx ∩N = {y, y′}.
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Note that nM (x) · nN (y) 6= 0 since otherwise this would imply that Dx is tangent
to N and thus intersects N at only one point. Note also that among nM (x) ·nN (y),
nM (x) · nN (y′), one is positive and the other one is negative. It then suffices to
prove that nM (x) · nN (y′) > 0. This fact is proven in [3]: with their notations,
t+(x) = y′ satisfies the desired relation. Since the proof is easy we repeat it here
for sake of completeness. Let x′ ∈ Ωy. Then, x′ 6= x otherwise we would get that
Θx is constant. The monotonicity property asserts that

(x− x′) · (y − y′) ≤ 0.(1.6)

Indeed, since x ∈ Ωy′ and x
′ ∈ Ωy, we have

ϕ(x) + ψ(y′) = c2(x, y
′) and ϕ(x′) + ψ(y) = c2(x

′, y).

Moreover, by definition of (ϕ, ψ),

ϕ(x) + ψ(y) ≤ c2(x, y) and ϕ(x′) + ψ(y′) ≤ c2(x
′, y′).

These relations imply that

c2(x
′, y) + c2(x, y

′) ≤ c2(x, y) + c2(x
′, y′).

Coming back to the definition of c2, we obtain Relation (1.6). Note that since

y, y′ ∈ Dx, the definition of Dx tells us that
−→
yy′ = λnM (x) for some λ 6= 0. If

we assume that nM (x) · nN (y′) < 0 and nM (x) · nN(y) > 0 then the fact that N
bounds a strictly convex domain forces λ < 0. Therefore, Relation (1.6) becomes
(x−x′) ·nM (x) ≤ 0 which is impossible since x 6= x′ and since M bounds a strictly
convex domain. This ends the proof of Proposition 1.4. �

Note that the preceding proof shows that

Lemma 1.5. For all x ∈ Γ, Dx ∩N has exactly two distinct points y, y′ such that

x is a maximum for Θy and a minimum for Θy′ . Moreover

nM (x) · nN (y) < 0 and nM (x) · nN (y′) > 0.

Proposition 1.6. The following assertions are equivalent:

(1) ϕ2 is C1;

(2) T is injective;

(3) for all y ∈M , Θy has exactly two critical points.

If one of these assertions is true, then Γ =M .

Proof. Let us show that 1) implies 2). Assume ϕ2 is C1. For all y ∈ N , define the
right line

D2

y = y −∇ϕ2(y) + span(nN (y)) .

An straightforward computation shows that for x ∈M ,

x ∈ D2

y ⇐⇒ y is a critical point of Θ2(·) := c2(x, ·)− ϕ2(·).(1.7)

Let x ∈ Γ. Then x is a maximum of the function Θy i.e. ϕ2(y) = Θy(x) for some
y ∈ N . Now, using the fact that ϕ222 = ϕ2 (see Proposition 1.2), one also has

sup
z∈M

(c2(z, y)− ϕ22(z)) = ϕ222(y) = ϕ2(y) = Θy(x).(1.8)

On the other hand, by Proposition 1.3, ϕ(x) = ϕ22(x) and hence

Θy(x) = c2(x, y)− ϕ22(x).
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Together with (1.8), we get that x is a maximum for z → c2(z, y)− ϕ22(z). Ob-
viously, mimicking what was done to get (1.1), we also have that y is a maximum
for the function of N z → c2(x, z) − ϕ2(z). Relation (1.7) then leads to x ∈ D2

y .
Assume now that T (x) = T (x′). We then obtain that x, x′ ∈ D2

T (x). Moreover,

Lemma 1.5 also establishes that nM (x) · nN (T (x)) < 0 and nM (x′) · nN (T (x)) < 0
which forces x and x′ to be equal since M bounds a strictly convex domain. This
proves that T is injective.

Let us prove that 2) implies 3). At first, we show that under assumption 2), Γ =M .
From Propositions 1.3 and 1.4, T : Γ → M is now bijective, continuous. Since Γ
is compact, it sends closed sets on closed sets and thus T is actually a homeomor-
phism. This ensures that Γ = M . Indeed, M and N bound some convex domains
in R

n and are then diffeomorphic to Sn. We just proved that Γ is a closed set ofM
homeomorphic to N and hence to Sn. To prove that Γ = M , it suffices to notice
that it is open in M and to conclude by the fact that M is connected. This follows
from the Jordan-Brouwer separation theorem (see for instance [4], Corollay (18.9)
Page 110).

We are now in position to prove 3). A consequence of Lemma 1.5 and the fact that
Γ =M is that for all (x, y) ∈M ×N such that x ∈ Ωy then

nM (x) · nN(y) < 0.(1.9)

We already noticed that each Ωx (x ∈ M) is reduced to a point (this comes from
Proposition 1.3 and the fact that Γ =M) but this is also true for Ωy for any y ∈ N .
Indeed, if x, z are some minima for Θy, they must belong to the right line Dy and
they must satisfy (1.9) which is only possible if x = z. So, let y ∈ N and let x be
a minimum of Θy and x′ be a maximum of Θy. Assume that Θy has some other
critical point x′′. Then, y ∈ Dx′′ . By Lemma 1.5, x′′ must be a maximum or a
minimum of Θy. The argument above tells us that x′′ cannot be a minimum. But
x′′ cannot be either a maximum: it would imply T (x) = T (x′′) which is impossible
since we assumed T to be injective. This proves that the only critical points of Θy
are x, x′.

Finally, we prove that 3) implies 1). Assume that Θy has only two critical points for
any y ∈ N . Then, for all y, Ω2

y is reduced to one point (otherwise, Θy has at least
two maxima and one minimum). From Point 5) of Proposition 1.2, we obtain that
ϕ2 is differentiable on N . It remains to prove that its differential is continuous. Let
(yk) be a sequence of points in N tending to some y. Let xk ∈ Ω2

yk
and x ∈ Ω2

y . Let
x′ be an adherence point of (xk). Since xk is a maximum of z → c2(z, yk)− ϕ(z),
passing to the limit, x′ is a maximum of z → c2(z, y) − ϕ(z). This implies that
x′ ∈ Ω2

y , which is reduced to one point. Hence x′ = x which shows that xk tends
to x. In particular, the sequence of right lines (D2

yk
) (which are orthogonal to the

tangent spaces TykN and which are such that xk ∈ D2

yk
) has a limit position which

is D2

y . The definition of these right lines gives the continuity at y of the differential
of ϕ2. This ends the proof of Proposition 1.6. �

Theorem 0.1 is a direct consequence of Propositions 1.3, 1.4 and 1.6.



OPTIMAL TRANSPORTATION BETWEEN HYPERSURFACES BOUNDING SOME STRICTLY CONVEX DOMAINS11

References

[1] N. Ahmad, H. K. Kim and R.J. McCann, Optimal transportation, topology and uniqueness,
Bull. Math. Sci. 1 (2011) 13-32

[2] P.A. Chiappori, R.J. McCann and L.P. Nesheim, Hedonic price equilibria, stable matching,

and opitmal transport: equivalence, topology and uniqueness, Econom. Theory 42 (2010),
317-354.

[3] W. Gangbo and R.J. McCann, Shape recognition via Wasserstein distance, Quart. Appl.
Math. 58, (2000) 705-737.

[4] M.J. Greenberg and J.R. Harper, Algebraic Topology, a first course, Mathematic Lecture
Note Series, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading,
Mass., 1981

[5] L. Kantorovich, On the translocations of masses, C.R. (Doklady) Acad. Sci. URSS (N.S) 37
(1942), 199-201

[6] C. Villani, Topics on transportations, AMS, Graduate Studies in Mathematics 58, 2003.


