Derivation of the magnetic Euler-Heisenberg energy - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2016

Derivation of the magnetic Euler-Heisenberg energy


In quantum field theory, the vacuum is a fluctuating medium which behaves as a nonlinear polarizable material. In this article, we perform the first rigorous derivation of the magnetic Euler-Heisenberg effective energy, a nonlinear functional that describes the effective fluctuations of the quantum vacuum in a classical magnetic field. We start from a classical magnetic field in interaction with a quan-tized Dirac field in its ground state, and we study a limit in which the classical magnetic field is slowly varying. After a change of scales, this is equivalent to a semi-classical limit $\hbar\to0$, with a strong magnetic field of order $1/\hbar$. In this regime, we prove that the energy of Dirac's polarized vacuum converges to the Euler-Heisenberg functional. The model has ultraviolet divergences, which we regularize using the Pauli-Villars method. We also discuss how to remove the regularization of the Euler-Heisenberg effective Lagrangian, using charge renormaliza-tion, perturbatively to any order of the coupling constant.
Fichier principal
Vignette du fichier
GLS7-Eff-Lag.pdf (420.15 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01270637 , version 1 (09-02-2016)
hal-01270637 , version 2 (30-03-2016)
hal-01270637 , version 3 (09-06-2017)



Philippe Gravejat, Mathieu Lewin, Eric Séré. Derivation of the magnetic Euler-Heisenberg energy. 2016. ⟨hal-01270637v2⟩
338 View
514 Download



Gmail Mastodon Facebook X LinkedIn More