Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau. - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Imaging Sciences Année : 2018

Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau.

Résumé

In this paper, two new algorithms to sample from possibly non-smooth log-concave probability measures are introduced. These algorithms use Moreau-Yosida envelope combined with the Euler-Maruyama discretization of Langevin diffusions. They are applied to a de-convolution problem in image processing, which shows that they can be practically used in a high dimensional setting. Finally, non-asymptotic bounds for one of the proposed methods are derived. These bounds follow from non-asymptotic results for ULA applied to probability measures with a convex continuously differentiable log-density with respect to the Lebesgue measure.
Fichier principal
Vignette du fichier
main.pdf (870.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01267115 , version 1 (04-02-2016)

Identifiants

Citer

Alain Durmus, Éric Moulines, Marcelo Pereyra. Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau.. SIAM Journal on Imaging Sciences, 2018, 11 (1), ⟨10.1137/16M110834⟩. ⟨hal-01267115⟩
574 Consultations
889 Téléchargements

Altmetric

Partager

More