Upper functions for positive random functionals. I. General setting and Gaussian random functions - Archive ouverte HAL
Article Dans Une Revue Mathematical Methods of Statistics Année : 2013

Upper functions for positive random functionals. I. General setting and Gaussian random functions

Résumé

In this paper we are interested in finding upper functions for a collection real-valued random variables Ψ χ θ , θ ∈ Θ. Here {χ θ , θ ∈ Θ} is a family of continuous random mappings, Ψ is a given sub-additive positive functional and Θ is a totally bounded subset of a metric space. We seek a non-random function U : Θ → R+ such that sup θ∈Θ Ψ χ θ −U (θ) + is " small " with prescribed probability. We apply the results obtained in the general setting to the variety of problems related to gaussian random functions and empirical processes.
Fichier principal
Vignette du fichier
upper_function_final2.pdf (395.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01265252 , version 1 (31-01-2016)

Identifiants

Citer

Oleg Lepski. Upper functions for positive random functionals. I. General setting and Gaussian random functions. Mathematical Methods of Statistics, 2013, 22 (1), pp.1-27. ⟨10.3103/S1066530713010018⟩. ⟨hal-01265252⟩
76 Consultations
124 Téléchargements

Altmetric

Partager

More