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Upper functions for positive random functionals.

General setting and Gaussian random functions.

Oleg Lepski
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39, rue F. Joliot-Curie
13453 Marseille, France

e-mail: lepski@cmi.univ-mrs.fr

Abstract: In this paper we are interested in finding upper functions for a collection real-
valued random variables

{
Ψ

(
χθ

)
, θ ∈ Θ

}
. Here {χθ, θ ∈ Θ} is a family of continuous random

mappings, Ψ is a given sub-additive positive functional and Θ is a totally bounded subset of a
metric space. We seek a non-random function U : Θ → R+ such that supθ∈Θ

{
Ψ

(
χθ

)
−U(θ)

}
+

is ”small” with prescribed probability. We apply the results obtained in the general setting to
the variety of problems related to gaussian random functions and empirical processes.

AMS 2000 subject classifications: Primary 60E15; secondary 62G07, 62G08.
Keywords and phrases: upper function, empirical processes, gaussian random function,
metric entropy, doubling measure.

1. Introduction

The main objective of this paper is to look from a novel point of view at some phenomena arising in
different areas of probability theory and mathematical statistics. We will try to understand what is
common between classical probabilistic results, such as the law of iterated logarithm for example,
and well-known problem in adaptive estimation called price to pay for adaptation. Why do two
different kinds of this price exist? What relates exponential inequalities for M -estimators, so-called
uniform-in-bandwidth consistency in density or regression model and the bounds for modulus of
continuity of gaussian random functions defined on a metric space equipped with doubling measure?

It turned out that all these and many other problems can be reduced to the following one.
Let T be a set and let (Ω, B, P) be a complete probability space. Let χ defined on T × Ω be a
given B-measurable map into a linear metric space S and let Ψ : S → R+ be a given continuous
sub-additive functional.
Let Θ ⊂ T and suppose that ∀θ ∈ Θ and ∀z > 0 one can find non-random U(θ, z) > 0 and c > 0
such that

P {[Ψ(χθ)− U(θ, z)] > 0} ≤ ce−z. (1.1)

Assuming additionally that λU(·, z) ≥ U(·, λz) for any z > 0, λ ≥ 1 we also have for any q ≥ 1

E
{
[Ψ(χθ)− U(θ, z)]+

}q ≤ cΓ(q + 1)
[
U(θ, 1)

]q
e−z, ∀z ≥ 1, (1.2)

where Γ is gamma-function and [a]+ is the positive part of a.
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The problem which we address now consists in a finding of U(θ, z) and U q(θ, z) satisfying

P

{
sup
θ∈Θ

[Ψ(χθ)−U(θ, z)] > 0

}
≤ ce−z; ∀z ≥ 1 (1.3)

E
{

sup
θ∈Θ

[Ψ(χθ)−U q(θ, z)]+

}q

≤ cq

[
inf
θ∈Θ

U q(θ, 1)
]q

e−z, ∀z ≥ 1, (1.4)

where c and cq are constants. If (1.3) and (1.4) hold we will say that U(·, ·) and U q(·, ·) are upper
functions for the collection of random variables {Ψ(χθ), θ ∈ Θ}.

The main questions which we would like to answer are the following.

• Do U(·, ·) and U q(·, ·) coincide with U(·, ·) up to numerical constants or there is a ”price to
pay” for passing from pointwise results (1.1)–(1.2) to uniform ones given in (1.3)–(1.4)?

• Do U(·, ·) and U q(·, ·) coincide up to numerical constants? In other words should one to pay
the same price for the probability and moment’s bounds?

We will show that a payment exists and in general U q(·, ·) À U(·, ·) À U(·, ·). Thus, we will
seek U(·, ·) and U q(·, ·) satisfying (1.3) and (1.4) and ”minimally” separated away from U(·, ·). We
will realize this program under the following condition.

Assumption 1. 1. There exist A : T → R+, B : T → R+ and c > 0 such that ∀z > 0

P {Ψ(χθ) ≥ z} ≤ c exp

{
− z2

A2(θ) + B(θ)z

}
, ∀θ ∈ Θ. (1.5)

2. There exist a : T× T → R+ and b : T× T → R+ such that ∀z > 0

P {Ψ(χθ1 − χθ2) ≥ z} ≤ c exp

{
− z2

a2(θ1, θ2) + b(θ1, θ2)z

}
, ∀θ1, θ2 ∈ Θ. (1.6)

Remark 1. If Assumption 1 (1) holds on T (not only on Θ), T is linear space and if, additionally,
the map χt is linear on T , then the Assumption 1 (2) is automatically fulfilled since one can take
a(t1, t2) = A(t1 − t2) and b(t1, t2) = B(t1 − t2), t1, t2 ∈ T.

Remark 2. We can easily deduce from (1.5) that for any θ ∈ Θ

P
{
Ψ(χθ) ≥ A(θ)

√
z + B(θ)z

}
≤ c exp {−z}, ∀z ≥ 0; (1.7)

E
{
Ψ(χθ)−

[
A(θ)

√
z + B(θ)z

]}q

+
≤ cΓ(q + 1)

[
A(θ) + B(θ)

]q
exp {−z}, ∀z ≥ 1. (1.8)

Therefore, (1.1)–(1.2) hold with U(θ, z) = A(θ)
√

z + B(θ)z.

Assumption 1 is not new. In particular, it can be found in slightly different form in van der Vaart
and Wellner (1996), Talagrand (2005), where this assumption is used for deriving the bound for
E [supθ∈Θ Ψ(χθ)]. The usual technique is based on the chaining argument available in view of (1.6).
It is worth mentioning that uniform probability and moment bounds for [supθ∈Θ Ψ(χθ)] in the case
where χθ is empirical or gaussian process are a subject of vast literature, see, e.g., Alexander (1984),
Talagrand (1994), Lifshits (1995), van der Vaart and Wellner (1996), van de Geer (2000), Massart
(2000), Bousquet (2002), Giné and Koltchinskii (2006) among many others. Such bounds play an
important role in establishing the laws of iterative logarithm and central limit theorems [see, e.g.,
Alexander (1984) and Giné and Zinn (1984)].
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However much less attention was paid to finding of upper functions. The majority of the papers,
where such problems are considered, contains asymptotical results, see, i.e. Kalinauskăite (1966),
Qualls and Watanabe (1972), Bobkov (1988), Shiryaev et al. (2002) and references therein. We
would like especially mention the paper Egishyants and Ostrovskii (1996), where upper function
satisfying the inequalities similar to (1.3), was obtained for the modulus of continuity of random
fields satisfying the Cramer condition.

The researches carried out in the present paper complete the investigations done in Goldenshluger
and Lepski (2011), where the upper functions as well as inequalities (1.3)–(1.4) were obtained under
following condition: χt is linear and there are A : T → R+, B : T → R+, V : T → R+ such that

P {Ψ(χt)− V (t) ≥ z} ≤ g

(
z2

A2(t) + B(t)z

)
, ∀t ∈ T,

where g : R+ → R+ is a strictly decreasing to zero function. We note that if g(x) = e−x and
V ≡ 0 this assumption coincides with (1.5) and, since χt is linear (1.6) is automatically fulfilled, see
Remark 1. In Goldenshluger and Lepski (2011) under additional assumption imposed on A,B, V
and Θ ⊂ T the upper functions for the collection {Ψ(χθ), θ ∈ Θ} were found. As it was shown
that they coincide with the function V up to universal constants! The imposed assumptions do not
admit the case V ≡ 0 that, as it was said above, leads to some ”price to pay” for passing from
pointwise results (1.1)–(1.2) to uniform ones given in (1.3)–(1.4).

To derive upper functions satisfying (1.3)–(1.4) we complete Assumption 1 by the following
conditions.

Assumption 2. χ• : T → S is continuous P-a.s.
Mappings a and b are semi-metrics on T and Θ is totally bounded with respect to a ∨ b.
AΘ := supθ∈Θ A(θ) < ∞, BΘ := supθ∈Θ B(θ) < ∞.

Denote by S the following set of real functions:

S =
{

s : R→ R+ \ {0} :
∞∑

k=0

s
(
2k/2) ≤ 1

}
.

For any Θ̃ ⊆ Θ and any semi-metric d on T let E
Θ̃, d

(δ), δ > 0, denote the entropy of Θ̃ measured

in d. For any x > 0, Θ̃ ⊆ Θ and s ∈ S define the quantities

e(a)
s

(
x, Θ̃

)
= sup

δ>0
δ−2E

Θ̃, a

(
x(48δ)−1s(δ)

)
, e(b)

s

(
x, Θ̃

)
= sup

δ>0
δ−1E

Θ̃, b

(
x(48δ)−1s(δ)

)
. (1.9)

Assumption 3. There exist s1, s2 ∈ S such that ∀x > 0

e(a)
s1

(
x,Θ

)
< ∞, e(b)

s2

(
x,Θ

)
< ∞.

What is this paper about? In the next section we construct upper functions for {Ψ(χθ), θ ∈ Θ}
and prove for them the inequalities (1.3)–(1.4) under Assumptions 1–3. We show that they are
completely determined by the functions A and B and by the entropies of their level sets measured
in semi-metrics a and b. We will see that obtained upper functions do not coincide with U(θ, z) =
A(θ)

√
z + B(θ)z, see Remark 2, and provide with explicit expression for the ”price to be paid for

uniformity”. In particular, if A := infθ∈Θ A(θ) > 0 and B := infθ∈Θ B(θ) > 0, we prove that this
”price” can be expressed as a given function of A(θ)/A and B(θ)/B.
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In this context it is interesting to compare our results with the usual probability bounds for
supθ∈Θ Ψ(χθ) above E {supθ∈Θ Ψ(χθ)} obtained from Talagrand’s or the Borel-Sudakov-Tsirelson
inequality (when available), combined with uniform bounds for E {supθ∈Θ Ψ(χθ)} proved in Tala-
grand (2005), Theorem 1.2.7, under condition close to our Assumption 1. Following this strategy
we will come to upper functions which are constant in θ. The main question is then what can one
gain using the technique developed in the paper with respect to the aforementioned approach? We
do not think that the answer can be done under ”abstract considerations”, i.e. under Assumptions
1-3 since it would require to prove that the found ”price to be paid for uniformity” is minimal.
However, in concrete examples it seems to be possible, in particular for some problems studied in
mathematical statistics. Let us mention some of them. First, we recall that upper functions are
used in all known constructions of adaptive procedures. Next, the use of upper functions being
constant in θ will lead to adaptive estimators which are not optimal (remind, that the adaptive
estimation theory is equipped with very developed criterion of optimality). Contrary to this, in all
known to the author examples the use of upper functions found in Propositions 2 and 3 allows to
construct optimal adaptive procedures (for more details see discussion after Proposition 2). Also,
we would like to emphasize that upper functions being constant in θ and the probability bounds
related to them are similar to the construction and the results described in Proposition 1, which is,
in its turn, the initial step for our considerations. This step as well as the Talagrand’s bounds are
obtained from chaining argument under, for instance, Assumption 1. In some sense one of our goals
is to show that the use of concentration inequalities (which cannot be guaranteed by a condition
similar to Assumption 1 ) in the construction of upper functions is not necessary. In particular,
in Section 3.1 we derive an upper function for the Lp-norms of Wiener integrals and deduce the
corresponding probability bounds directly from Proposition 3 without passing to the concentration
inequalities.

As it was mentioned above upper functions for random objects appear in various areas of math-
ematical statistics. To apply them in the construction of statistical procedures they have to be
computed explicitly. In particular the study of the adaptive estimation in the density model re-
quires to find upper functions for the empirical processes of different kind. For the majority of
existed problems Assumption 1 follows from the Berstein’s inequality. However the application of
Propositions 2-3 requires to compute the functions E or Ê (involved in the description of upper
functions) and there is no a general recipe how to do it. One of our main objectives is to provide
with rather general assumptions under which the latter quantities can be computed explicitly. In
particular, we provide with the condition (main assumption in Part II of the paper) and to the best
of our knowledge the assumptions of such kind have not been appeared in the existing literature.
Under this assumption the upper functions are found for the variety of particular problems.

Organization of the paper. The paper is divided into 3 parts which are supposed to be pub-
lished separately.
Part I. In Section 2 of we construct upper functions for {Ψ(χθ), θ ∈ Θ} and prove for them the
inequalities (1.3)–(1.4) under Assumptions 1–3. In fact we present two different constructions which
will be referred to upper functions of the first and second type (Propositions 2 and 3). We also derive
some consequences related to the upper functions for modulus of continuity of random real-valued
mappings (Propositions 4 and 5 ). In Section 3 we apply Propositions 3 and 4 to gaussian random
functions. In Section 3.1 we derive upper functions for Lp-norm of some Wiener integrals (Theorem
1) and in Section 3.2 we study the local modulus of continuity of gaussian functions defined on a
metric space satisfying doubling condition (Theorem 2). Proofs are given in Sections 4–5.
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Part II and Part III are devoted to the detailed consideration of generalized empirical processes.
We provide with rather general assumption under which the upper functions admit the explicit
expression. We also establish non-asymptotical versions of the law of iterated logarithm and the
law of logarithm. Then we apply the developed technique to empirical processes possessing some
special structure.

2. General setting

Denote by Sa,b the subset of S × S for which Assumption 3 holds and let A,B, a and b be any
mappings for which Assumption 1 is fulfilled.

For any ~s = (s1, s2) ∈ Sa,b, any κ = (κ1,κ2), κ1 > 0,κ2 > 0, and any Θ̃ ⊆ Θ put

e~s

(
κ, Θ̃

)
= e(a)

s1

(
κ1, Θ̃

)
+ e(b)

s2

(
κ2, Θ̃

)
. (2.1)

2.1. Inequalities for the suprema

Put for any Θ̃ ⊆ Θ, any ε > 0 and any y ≥ 0

U
(ε)
~s

(
y,κ, Θ̃

)
= κ1

√
2
[
1 + ε−1

]2
e~s

(
κ, Θ̃

)
+ y + κ2

(
2
[
1 + ε−1]2e~s

(
κ, Θ̃

)
+ y

)
.

Proposition 1. Let Assumptions 1-3 hold and let Θ̃ ⊆ Θ be fixed. Then for any κ̃ satisfying
κ̃1 ≥ sup

θ∈Θ̃
A(θ) and κ̃2 ≥ sup

θ∈Θ̃
B(θ), any ~s ∈ Sa,b, ε ∈ (

0,
√

2− 1
]

and y ≥ 1,

P

{
sup
θ∈Θ̃

Ψ(χθ) ≥ U
(ε)
~s

(
y, κ̃, Θ̃

)
}
≤ 2c exp

{
−y/(1 + ε)2

}
.

Moreover, for any q ≥ 1

E

{
sup
θ∈Θ̃

Ψ(χθ)− U
(ε)
~s

(
y, κ̃, Θ̃

)
}q

+

≤ 2cΓ(q + 1)
[
(1 + ε)2y−1U

(ε)
~s

(
y, κ̃, Θ̃

)]q
exp

{
−y/(1 + ε)2

}
.

We remark that sup
θ∈Θ̃

Ψ(χθ) is B-measurable for any Θ̃ ⊆ Θ since Ψ is continuous, the mapping
θ 7→ χθ is continuous P-a.s., Θ is a totally bounded set and considered probability space is complete
(see, e.g. Lemma 1 below).

Discussion We will see that the Proposition 1 is crucial technical tool for deriving upper func-
tions. It contains the main ingredient of our future construction the quantity e~s. The important
issue in this context is the choice of ~s ∈ Sa,b. For many particular problems it is sufficient to choose
~s = (s∗, s∗), where

s∗(x) = (6/π2)
(
1 + [lnx]2

)−1
, x ≥ 0. (2.2)

This choice is explained by two simple reasons: its explicit description allowing to compute the
quantity e~s in particular problem and the logarithmical decay of this function when x → ∞. In
view of the latter remark we can consider the set Θ those entropy obeys the restriction which is
closer to the minimal one (c.f. Sudakov lower bound for gaussian random functions Lifshits (1995)).
We note, however, that there exist examples where ~s has to be chosen on a more special way (see
Theorem 1).
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Let us now discuss the role of the parameter ε. In most particular problems considered in the
paper we will not be interested in optimization of the numerical constants involved in the description
of upper functions. If so, the choice of this parameter can be done in arbitrary way and we will
put ε =

√
2 − 1 to simplify the notations and computations. Note, however, that there are some

problems (see, for instance Section 3.2), where ε must be chosen carefully. The typical requirements
to this choice is ε = ε(y) and

ε(y) → 0, yε2(y) → 0, y →∞.

The bounds similar to those presented in Proposition 1 are the subject of vast literature see,
for instance, the books Lifshits (1995), van der Vaart and Wellner (1996) or van de Geer (2000).
Note, however, that the results presented in the proposition may have an independent interest, at
least, for the problems where the quantity e~s can be expressed explicitly. In this case under rather
general conditions it is possible, putting Θ̃ = Θ and κ̃ =

(
AΘ, BΘ

)
, to compute the tail probability

as well as the expected value of the suprema of random mappings. Note also that Assumptions 1-3
guarantee that E {supθ∈Θ Ψ(χθ)}q is finite for any q ≥ 1.

2.2. Upper functions of the first and second type

We will now use Proposition 1 in order to derive the upper functions for Ψ (χθ) on Θ. Denote
A = infθ∈Θ A(θ) and B = infθ∈Θ B(θ).

We present two kinds of upper functions for Ψ (χθ) on Θ which we will refer to upper functions
of the first and second type. The first construction is completely determined by the functions A,
B and by the semi-metrics a and b. It requires however the additional condition A > 0, B > 0. We
will use corresponding results for the particular problems in Parts II and III.

The second construction is related to some special structure imposed on the set Θ. Namely we
will suppose that Θ = ∪αΘα∈A, where

{
Θα, α ∈ A

}
is a given collection of sets. Here we will

be interested in a finding of upper function for supθ∈Θα
Ψ(χθ) on A, which can be also viewed as

an upper function for Ψ (χθ) on Θ. The corresponding results are used in order to obtain rather
precise inequalities for the modulus of continuity of random functions, Section 3.2. Moreover we
apply this bound for deriving of an upper function for the Lp-norms of Wiener integrals, Section
3.1. We deduce the corresponding inequality directly from Proposition 3 below without passing to
the concentration inequalities.

We finish this short introduction with the following remark. In order to establish the inequali-
ties (1.3)–(1.4) for the upper functions presented below we will need to prove that corresponding
supremum is a random variable. The result below is sufficient for all problems considered in the
paper and before we start the proofs we will not discuss the measurability issue.

Lemma 1. Let T be the set equipped with the metric d, (Ω, B,P) be a complete probability space
and ζ : Ω × T → R be P-a.s. continuous. Let Z be a set, g : Z → R be a given function and
{Tz ⊆ T, z ∈ Z} be an arbitrary sequence of sets. If T is totally bounded then supz∈Z

[
supt∈Tz

ζ(t, ·)−
g(z)

]
is B-measurable.

The proof of the lemma is given in Appendix. We would like to emphasize that there is no any
assumption imposed on the function g, index set Z and on the collection {Tz ⊆ T, z ∈ Z}.

Putting Z = T and Tt = {t} we come to the following consequence of Lemma 1.

Corollary 1. Under assumptions of Lemma 1 supt∈T

[
ζ(t, ·)− g(t)

]
is B-measurable.
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Upper functions of the first type As it was said above throughout this section we will suppose
that A > 0, B > 0. Put for any t > 0

ΘA(t) =
{
θ ∈ Θ : A(θ) ≤ t

}
, ΘB(t) =

{
θ ∈ Θ : B(θ) ≤ t

}
.

For any ~s ∈ Sa,b introduce the function

E~s(u, v) = e(a)
s1

(
Au,ΘA

(
Au

))
+ e(b)

s2

(
Bv, ΘB

(
Bv

))
, u, v ≥ 1. (2.3)

Denote also `(u) = ln {1 + ln (u)}+ 2 ln {1 + ln {1 + ln (u)}} and set for any θ and ε > 0, r ≥ 0

Pε(θ) = 2
[
1 + ε−1]2E~s

(Aε(θ),Bε(θ)
)
+ (1 + ε)2

[
`
(Aε(θ)

)
+ `

(Bε(θ)
)]

; (2.4)

Mε,r(θ) = (1 + ε)2
{
2
[
1 + ε−1]2E~s

(Aε(θ),Bε(θ)
)
+ (ε + r) ln

[Aε(θ)Bε(θ)
]}

, (2.5)

where Aε(θ) = (1 + ε)
[
A(θ)

/
A

]
and Bε(θ) = (1 + ε)

[
B(θ)

/
B

]
. Define for any z ≥ 0

V(z,ε)(θ) = (1 + ε)2
(

A(θ)
√

Pε(θ) + (1 + ε)2z + B(θ)
[
Pε(θ) + (1 + ε)2z

])
; (2.6)

U(z,ε,r)(θ) = (1 + ε)2
(

A(θ)
√

Mε,r(θ) + (1 + ε)2z + B(θ)
[
Mε,r(θ) + (1 + ε)2z

])
. (2.7)

In the proposition below we prove that the functions defined in (2.6) and (2.7) are upper functions
for Ψ (χθ) on Θ. We remark that they are completely determined by the functions A and B and by
the entropies of their level sets measured in semi-metrics a and b. The number ε and the couple of
functions ~s can be viewed as tuning parameters allowing either to weaken assumptions or to obtain
sharper bounds but they are not related to the random functional Ψ (χθ) itself.

Proposition 2. Let Assumptions 1-3 be fulfilled. Then ∀~s ∈ Sa,b, ∀ε ∈
(
0,
√

2− 1
]

and ∀z ≥ 1

P

{
sup
θ∈Θ

[
Ψ(χθ)−V(z,ε)(θ)

]
≥ 0

}
≤ 2c

[
1 +

[
ln {1 + ln (1 + ε)}

]−2
]2

exp {−z};

E

{
sup
θ∈Θ

[
Ψ(χθ)−U(z,ε,q)(θ)

]}q

+

≤ c2(5q/2)+2Γ(q + 1) ε−q−4 [
A ∨B

]q exp {−z}.

It is obvious that the assertions of the proposition remain valid if one replaces the function
E~s by any its upper bound. It is important since the exact computation of this function is too
complicated in general. We note that the role of the latter function in our construction is similar
to those which Dudley integral plays in the computations of the expectation of the suprema of
gaussian or sub-gaussian processes Lifshits (1995), Talagrand (2005).

Price to pay for ”uniformity” We remark that in view of (1.7) and (1.8), the function
U (z)(θ) := A(θ)

√
z + B(θ)z can be viewed as ”pointwise upper function” for Ψ(χθ), i.e. for fixed θ.

Comparing the inequalities (1.7) and (1.8) with those given in Proposition 2 we conclude that they
differ from each other by numerical constants only. In this context, the functions Pε(·) and Mε,r(·)
given by (2.4) and (2.5) can be viewed as price to pay for ”uniformity”. That means that in order
to pass from ”pointwise” result to the ”uniform” one we need, roughly speaking, to multiply A(·)
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by
√

Pε(·) or
√

Mε,r(·) and B(·) by Pε(·) or Mε,r(·). The question, arising naturally: is such pay-
ment necessary or minimal? In this context it is worth mentioning the relation between well-known
phenomenon in adaptive estimation, called price to pay for adaptation Lepski (1991), Lepski and
Spokoiny (1997) and Spokoiny (1996), and what we call here price to pay for uniformity. We have
no place here to describe this relation in detail and mention only several facts.

First let us remark almost all constructions of adaptive estimators (model selection Barron et
al. (1999), risk hull minimization Cavalier and Golubev (2006), Lepski method Lepski (1991), or
recently developed universal estimation routine Goldenshluger and Lepski (2008, 2009)) involve
the upper functions for stochastic objects of different kinds. Next, it is known that there are two
types of price to pay for adaptation: (ln)-price, Lepski (1991) and (ln ln)-price, Spokoiny (1996).
The (ln)-price appears in the problems where the risk of estimation procedures is described by a
power loss-functions and it corresponds to the function Mε,r(·), where the parameter r is a power.
The (ln ln)-price appears in the case of bounded losses that corresponds to the function Pε(·). Since
the theory of adaptive estimation is equipped with very developed criteria of optimality, Lepski
(1991), Tsybakov (1998), Kluchnikoff (2005), we might assert that the payment for uniformity is
optimal if the use of corresponding upper function leads to optimal adaptive estimators.

We finish the discussion concerning the statements of Proposition 2 with the following remark.
Comparing the result given in (1.8) with the second assertion of Proposition 2 we can state that
the inequality obtained there is very precise since, remind, A = infθ∈Θ A(θ) and B = infθ∈Θ B(θ).

Upper functions of the second type Suppose that we are given by the collection
{
Θα, α ∈ A

}
,

satisfying Θ = ∪α∈AΘα, and by two mappings τ1 : A → (
0, τ1

]
, τ2 : A → (

0, τ2
]
, where τ1, τ2 < ∞.

For any u > 0 put

Θ′
1(u) =

⋃

α: τ1(α)≤u

Θα, g∗A(u) = sup
θ∈Θ′1(u)

A(θ);

Θ′
2(u) =

⋃

α: τ2(α)≤u

Θα, g∗B(u) = sup
θ∈Θ′2(u)

B(θ),

and let gA and gB be arbitrary chosen increasing functions, satisfying gA ≥ g∗A and gB ≥ g∗B (we
note that obviously g∗A and g∗B are increasing).

Since Θ′
1(·), Θ′

2(·) ⊆ Θ, in view of Assumption 3 for any u, v > 0 one can find the functions
s1(u, ·) and s2(v, ·) for which the latter assumption is fulfilled on Θ′

1(u) and Θ′
2(v) respectively. Let

us suppose additionally that

λ1 := sup
t∈[1,

√
2]

sup
x>τ1

sup
δ>0

s1(xt, δ)
s1(x, δ)

< ∞, λ2 := sup
t∈[1,

√
2]

sup
x>τ2

sup
δ>0

s2(xt, δ)
s2(x, δ)

< ∞, (2.8)

where τ1 = infα τ1(α) and τ2 = infα τ2(α).
We remark that if the functions s1(u, ·) and s2(v, ·) are chosen independently of u, v then λ1 =

λ2 = 1. It is also obvious that λ1, λ2 ≥ 1.
The condition (2.8) allows us to define the function:

E ′(u, v) = e
(a)
s1(u,·)

(
λ−1

1 gA(u), Θ′
1(u)

)
+ e

(b)
s2(v,·)

(
λ−1

2 gB(v), Θ′
2(v)

)
, u, v > 0. (2.9)

We note that the function E ′ is constructed similarly to the function E used in the previous section,
but now the functions s1 and s2 can be chosen in accordance with considered level sets.
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At last, for any α ∈ A and any ε > 0 set

Ê(ε)(α) = E ′
(
(1 + ε)τ1(α), (1 + ε)τ2(α)

)
.

Put δj = (1 + ε)−j , j ≥ 0, and let Rr : R+ × R+ → R+, r ≥ 0, be an arbitrary family of increasing
(or decreasing) in both arguments functions, satisfying for any ε ∈ (

0,
√

2− 1
]

J∑

j=0

K∑

k=0

[
gA

(
τ1δj

) ∨ gB

(
τ2δk

)]r exp
{−Rr

(
τ1δj , τ2δk

)}
=: R(ε,r) < ∞. (2.10)

Here integers J,K are defined as follows.

J =
⌊
ln1+ε

(
τ1

/
τ1

)⌋
+ 1, K =

⌊
ln1+ε

(
τ2

/
τ2

)⌋
+ 1.

If τ i = 0, i = 1, 2, the corresponding quantity is put equal to infinity.
Set R̂

(ε)
r (α) = Rr

(
rετ1(α), rετ2(α)

)
, where rε = (1 + ε) if Rr is increasing and rε = (1 + ε)−1 if

Rr is decreasing, and define

Û(z,ε,r)(α) = (1 + ε)gA

(
[1 + ε]2τ1(α)

)√
2
[
1 + ε−1

]2 Ê(ε)(α) + R̂
(ε)
r (α) + z

+ (1 + ε)2gB

(
[1 + ε]2τ2(α)

)(
2
[
1 + ε−1]2 Ê(ε)(α) + R̂(ε)

r (α) + z
)
.

Below we assert that Û (z,ε,r), r = 0, r = q, are upper functions for
[
supθ∈Θα

Ψ (χθ)
]

on A. However,
before to present exact statements, let us briefly discuss some possible choices of the functions Rr.
We would like to emphasize that the opportunity to select these functions allows to obtain quite
different and precise results. First possible choice is given by

R0(u, v) = `
(
τ1u

−1
)

+ `
(
τ2v

−1
)
, Rr(u, v) = ε

[
ln

(
τ1u

−1
)

+ ln
(
τ2v

−1
)]

, r > 0. (2.11)

These functions are used in the problems in which Ê(ε)(·) is bounded by some absolute constant
independent of all quantities involved in the description of the problem, assumptions etc.

This choice leads to the following values of the constants in (2.10):

R(ε,0) ≤
[
2 +

[
ln {1 + ln (1 + ε)}

]−2
]2

, R(ε,r) < 4
[
gA

(
τ1

) ∨ gB

(
τ2

)]r
ε−4. (2.12)

Another important choice is given by Rr = E ′ independently of r, see, for instance, Theorem 1. In
view of (2.10), this choice corresponds to the case when the function E ′ increases to infinity.

Proposition 3. Let Assumptions 1-3 be fulfilled. Then for any s1, s2 satisfying (2.8) and any
Rr, r ≥ 0, satisfying (2.10), for any ε ∈ (

0,
√

2− 1
]

and any z ≥ 1, q ≥ 1

P

{
sup
α∈A

[
sup
θ∈Θα

Ψ(χθ)− Û(z,ε,0)(α)
]
≥ 0

}
≤ 2cR(ε,0) exp {−z};

E

{
sup
α∈A

[
sup
θ∈Θα

Ψ(χθ)− Û(z,ε,q)(α)
]}q

+

≤ c2(5q/2)+1Γ(q + 1)R(ε,q) ε−q exp {−z}.

Remark 3. We note that the results of the proposition is very general. Indeed, there are no as-
sumptions imposed on the collection Θα, α ∈ A, and the functions τ1, τ2 can be chosen arbitrary.
Moreover, the condition (2.10) is very mild, so the choice of functions Rr is quite flexible.
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2.3. Upper functions for the modulus of continuity of random mappings

In this section we apply Proposition 3 in order to derive upper functions for the local and global
modulus of continuity of real-valued random mappings. It is worth mentioning that in this circle
of problems the upper functions are actively exploited, see e.g. Egishyants and Ostrovskii (1996)
and the references therein. We will suppose that Assumption 1 (2), Assumption 2 and Assumption
3 are verified, χt is real-valued random mapping defined on the metric space T, d is a semi-metric
on T and Ψ(·) = | · |.

Upper function for local modulus of continuity Let θ0 be a fixed element of Θ and set for
any ∆ ∈ (

0, Dd(Θ)
]
, where Dd(Θ) is the diameter of Θ measured in the semi-metric d,

m∆(θ0) = sup
θ∈Θ∆

∣∣χθ − χθ0

∣∣, Θ∆ =
{
θ ∈ Θ : d

(
θ, θ0

) ≤ ∆
}
.

Thus, m∆(θ0), ∆ ∈ (
0, Dd(Θ)

]
, is the local modulus of continuity of χθ in θ0 measured in d.

If we put χ̃θ = χθ−χθ0 , θ ∈ Θ, we assert first that Assumption 1 (2) can be viewed as Assumption
1 (1) for χ̃θ on Θ with A(·) = a(·, θ0) and B(·) = b(·, θ0). Next, noting that χ̃θ1 − χ̃θ2 = χθ1 − χθ2

for any θ1, θ2 ∈ Θ we conclude that Assumption 1 (2) is verified for χ̃θ on Θ with a and b.
Thus, we can apply Proposition 3 with α = ∆, Θα = Θ∆, A =

(
0, Dd(Θ)

]
and we choose

τ1(∆) = τ2(∆) = ∆. This choice implies obviously for any u ≤ Dd(Θ)

Θ′
1(u) = Θ′

2(u) = Θu, gA(u) = sup
θ: d

(
θ,θ0

)
≤u

a
(
θ, θ0

)
, gB(u) = sup

θ: d
(
θ,θ0

)
≤u

b
(
θ, θ0

)
.

Fix ~s ∈ Sa,b and put for any ∆ ∈ (
0, Dd(Θ)

]
and any ε ∈ (

0,
√

2− 1
]

Ê(ε)(∆, θ0) = e(a)
s1

(
gA

(
[1 + ε]∆

)
,Θ[1+ε]∆

)
+ e(b)

s2

(
gB

(
[1 + ε]∆

)
, Θ[1+ε]∆

)
.

Here e
(a)
s1 and e

(b)
s2 are defined by (1.9). We also set λ1 = λ2 = 1 since the functions s1, s2 are chosen

independently of the collection
{
Θ∆, ∆ ∈ (

0, Dd(Θ)
]}

.

Choose also R0(u, v) = `
(
τ1u

−1
)

+ `
(
τ2v

−1
)

and define

V̂
(z,ε)

~s (∆, θ0) = (1 + ε)gA
(
[1 + ε]2∆

)√
2
[
1 + ε−1

]2Ê(ε)(∆, θ0) + 2`
(
(1 + ε)Dd(Θ)

/
∆

)
+ z

+ (1 + ε)2gB
(
[1 + ε]2∆

){
2
[
1 + ε−1]2Ê(ε)(∆, θ0) + 2`

(
(1 + ε)Dd(Θ)

/
∆

)
+ z

}
.

Then, applying Proposition 3 and taking into account (2.12) we come to the following result.

Proposition 4. Let Assumptions 1-3 be fulfilled. Then for any ~s ∈ Sa,b, ε ∈ (
0,
√

2− 1
]

and z ≥ 1

P





sup
∆∈

(
0,Dd(Θ)

]
[
m∆ − V̂

(z,ε)
~s (∆, θ0)

]
≥ 0




≤ 2c

[
2 +

[
ln {1 + ln (1 + ε)}

]−2
]2

exp {−z}.

In Section 3 we apply Proposition 4 to gaussian random functions defined on a metric space
satisfying so-called doubling condition.
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Remark 4. If b ≡ 0, d = a and sup
∆∈

(
0,Dd(Θ)

] Ê(ε)(∆, θ0) =: Ê(ε)(θ0) < ∞, the upper function

V̂
(z,ε)

~s has a very simple form

V̂
(z,ε)

~s (∆, θ0) = (1 + ε)3∆
√

2
[
1 + ε−1

]2Ê(ε)(θ0) + `
(
(1 + ε)Dd(Θ)

/
∆

)
+ z. (2.13)

Hence, the result of Proposition 4 can be viewed as the non-asymptotical version of the law of
iterated logarithm for sub-gaussian processes defined on some totaly bounded subset of metric space.
In this context it is worth mentioning the paper Egishyants and Ostrovskii (1996) where the upper
functions for local and global modulus of continuity were found for the stochastic processes satisfying
Cramer’s condition.

Remark 5. We also note that we replaced in (2.13) the factor 2`
(
Dd(Θ)

/
∆

)
appeared in the

upper function used in Proposition 4 by `
(
Dd(Θ)

/
∆

)
. It is explained by the fact that τ2 = 0

in (2.11) since B, b ≡ 0. By the same reason, the probability bound in this case is given by

2c
[
2 +

[
ln {1 + ln (1 + ε)}

]−2
]
exp {−z}.

Upper function for global modulus of continuity Set Θ(2) = Θ × Θ and let for any ϑ =
(θ1, θ2) ∈ Θ(2) and any ∆ ∈ (

0, Dd(Θ)
]
,

ζ(ϑ) = χθ1 − χθ2 , m∆ = sup
ϑ∈Θ

(2)
∆

∣∣ζϑ

∣∣, Θ(2)
∆ =

{
ϑ ∈ Θ(2) : d

(
θ1, θ2

) ≤ ∆
}
.

Thus, m∆, ∆ ∈ (
0, Dd(Θ)

]
, is the global modulus of continuity of χθ on Θ measured in d.

Put A(ϑ) = a(θ1, θ2), B(ϑ) = b(θ1, θ2), ϑ = (θ1, θ2) ∈ Θ(2), and equip Θ(2) with the following
semi-metrics: ϑ = (θ1, θ2), ς = (ς1, ς2) ∈ Θ(2)

a(2)(ϑ, ς) = 2 [a(θ1, ς1) ∨ a(θ2, ς2)] , b(2)(ϑ, ς) = 2 [b(θ1, ς1) ∨ b(θ2, ς2)] .

Some remarks are in order. We note first that Assumption 1 (2) can be viewed as Assumption 1
(1) for ζ(ϑ) on Θ(2) with A = A and B = B.

Next we obtain in view of Assumption 1 (2) ∀ϑ, ς ∈ Θ(2) and ∀z > 0

P
{
|ζ(ϑ)− ζ(ς)| ≥ z

}
≤ P

{∣∣χθ1 − χς1

∣∣ ≥ z/2
}

+ P
{∣∣χθ2 − χς2

∣∣ ≥ z/2
}

≤ c exp

{
− z2

4
[
a(θ1, ς1)

]2 + 2b(θ1, ς1)z

}
+ c exp

{
− z2

4
[
a(θ2, ς2)

]2 + 2b(θ2, ς2)z

}

≤ c(2) exp

{
− z2

[
a(2)(ϑ, ς)

]2 + b(2)(ϑ, ς)z

}

We conclude that Assumption 1 (2) holds for ζ(ϑ) on Θ(2) with a = a(2), b = b(2) and c(2) = 2c.

Since obviously

Ea(2),Θ(2)(ς) ≤ 2Ea,Θ(ς/2), Eb(2),Θ(2)(ς) ≤ 2Eb,Θ(ς/2), ς > 0, (2.14)

we assert that Assumptions 2 and 3 are fulfilled on Θ(2) with a = a(2) and b = b(2).
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Put Θ(2) = ∪∆>0Θ
(2)
∆ . Since Θ(2) ⊂ Θ(2) we can apply Proposition 3 with α = ∆, Θα =

Θ(2)
∆ , A =

(
0, Dd(Θ)

]
and we choose τ1(∆) = τ2(∆) = ∆.

The latter choice implies obviously for any u ≤ Dd(Θ)

Θ′
1(u) = Θ′

2(u) = Θ(2)
u , gA(u) = sup

ϑ∈Θ
(2)
u

A(ϑ), gB(u) = sup
ϑ∈Θ

(2)
u

B(ϑ).

Fix ~s ∈ Sa,b and put for any ∆ ∈ (
0, Dd(Θ)

]
and any ε ∈ (

0,
√

2− 1
]

Ê(ε)(∆) = e(a(2))
s1

(
gA

(
[1 + ε]∆

)
, Θ(2)

[1+ε]∆

)
+ e(b(2))

s2

(
gB

(
[1 + ε]∆

)
, Θ(2)

[1+ε]∆

)
.

Here e
(a(2))
s1 and e

(b(2))
s2 are defined by (1.9), where a,b are replaced by a(2) and b(2) respectively.

We also set λ1 = λ2 = 1 since the functions s1, s2 are chosen independently of the collection{
Θ(2)

∆ , ∆ ∈ (
0, Dd(Θ)

]}
. Choose R0(u, v) = `

(
τ1u

−1
)

+ `
(
τ2v

−1
)

and define

V̂
(z,ε)

~s (∆) = (1 + ε)gA
(
[1 + ε]2∆

)√
2
[
1 + ε−1

]2Ê(ε)(∆) + 2`
(
(1 + ε)Dd(Θ)

/
∆

)
+ z

+ (1 + ε)2gB
(
[1 + ε]2∆

){
2
[
1 + ε−1]2Ê(ε)(∆) + 2`

(
(1 + ε)Dd(Θ)

/
∆

)
+ z

}
.

Then, applying Proposition 3 and taking into account (2.12) we come to the following result.

Proposition 5. Let Assumptions 1-3 be fulfilled. Then for any ~s ∈ Sa,b, ε ∈ (
0,
√

2− 1
]

and z ≥ 1

P





sup
∆∈

(
0,Dd(Θ)

]
[
m∆ − V̂

(z,ε)
~s (∆)

]
≥ 0




≤ 4c

[
2 +

[
ln {1 + ln (1 + ε)}

]−2
]2

exp {−z}.

The obtained inequality allows, in particular, to prove that the families of probabilities measures
generated by χθ is dense. This, in its turn, is crucial step in proving of the weak convergence of
probabilities measures.

3. Gaussian random functions

In this section we apply Propositions 2-4 to the family of zero-mean gaussian random functions.
Thus, let χθ, θ ∈ Θ, is a real valued continuous gaussian random function such that Eχθ = 0, ∀θ ∈
Θ. We are interested first in finding an upper function for

∣∣χθ

∣∣, θ ∈ Θ. Let

V (θ) =
√

E |χθ|2, ρ(θ1, θ2) =
√

E |χθ1 − χθ2 |2

We remark that Assumption 1 holds with c = 2, B ≡ 0 and b ≡ 0 and ∀A ≥ √
2V , ∀a ≥ √

2ρ.
Since b ≡ 0 Assumption 3 is reduced to

Assumption 3 [Gaussian case]. There exist s ∈ S such that for any x > 0

sup
δ>0

δ−2E
Θ̃, a

(
x(48δ)−1s(δ)

)
< ∞.

Thus, if the latter assumption holds, Propositions 2-4 can be applied.
The aim of this section is to find uppers functions for quite different functionals of various

gaussian processes. We would like to emphasize that the original problem is not always related to
the consideration of

∣∣χθ

∣∣, θ ∈ Θ, although such problems are also studied. The idea is to reduce it
(if necessary) to those for which one of Propositions 2-4 can be used. Without special mentionning
we will always consider a separable modification of χθ, θ ∈ Θ.
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3.1. Upper functions for Lp-norms of Wiener integrals

Let K : Rd → R be a continuous compactly supported function such that ‖K‖∞ < ∞. Without loss
of generality we will assume that the support of K is [−1/2, 1/2]d. Let 0 < h(min) ≤ h(max) ≤ 1 be
given numbers. Put H =

[
h(min), h(max)

]
and let Kh(u) = h−dK (u1/h, . . . , ud/h) , h ∈ H, u ∈ Rd.

Let b(dt) is white noise on Rd and consider the family of gaussian random fields

ξh(t) =
∫

Rd
Kh (t− u) b(du), h ∈ H.

Let Kµ = [−µ/2, µ/2]d, µ ≥ 1, be a given cube and let for any 1 ≤ p < ∞

∥∥ξh

∥∥
p

=

(∫

Kµ

∣∣ξh(t)|pdt

) 1
p

.

The objective is to find an upper function for
∥∥ξh

∥∥
p

on H and later on C1, C2 . . . , denote the
constants completely determined by d, p, µ, γ and K. It is worth mentioning that the explicit
values of these constants can be found and some of them are given in the proof of the theorem.

We will be interested only the case 2 ≤ p < ∞, since for any p ∈ [1, 2) we obviously have

∥∥ξh

∥∥
p
≤ (µ)

d(2−p)
2p

∥∥ξh

∥∥
2

and, therefore, we can use the upper function found for p = 2 for any p ∈ [1, 2).
Let Bs

q,r, s > 0, 1 ≤ q, r ≤ ∞, denote the Besov space on Rd, see e.g. Edmunds and Triebel
(1996), and later on Hq(s, L) denote the the ball of the radius L > 0 in Bs

q,∞.
Suppose that K ∈ H∞(γ, L) and without loss of generality we assume that L = 1 that implies

in particular that ‖K‖∞ ≤ 1.

Theorem 1. Assume that γ > d/2. Then for any 2 ≤ p < ∞, h(min), h(max) ∈ (0, 1), and q ≥ 1

P
{

sup
h∈H

[∥∥ξh

∥∥
p
− C1h

−d/2
]
≥ 0

}
≤ C2 exp

{
−2−3/2

(
h(max)

)−2d/p
}

E
{

sup
h∈H

[∥∥ξh

∥∥
p
− C1h

−d/2
] }q

+

≤ C3(q)
(
h(max)

) qd(2−p)
2p exp

{
−2−3/2

(
h(max)

)−2d/p
}

.

The proof of the theorem is given in Section 5. The constant C1 involved in the description of
found upper functions is bounded function of p on any bounded interval. Thus, the upper functions
are independent of p if p ∈ [2, p0] for any given p0 ≥ 2.

Also it is important to mention that the obtained upper functions are sharp. Indeed, it is not
difficult to prove that for any h > 0

C4h
−d/2 ≤ E

∥∥ξh

∥∥
p
≤ C5h

−d/2.

This, together with the concentration inequality for gaussian processes, Talagrand (1994), yields in
particular for any given h > 0

P
{∥∥ξh

∥∥
p
≥ C̃1h

−d/2
}
≤ C̃2 exp

{
−C̃3h

−2d/p
}
.

This inequality coincides, up to numerical constants, with the first inequality in Theorem 1 in
particular case when h(min) = h(max) = h.
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3.2. Upper functions for local modulus of continuity under doubling condition

Let metric space (T, d) be equipped with Borel measure κ. This measure is doubling if ∃Q ≥ 1
such that

κ
{
Bd(t, 2r)

} ≤ Qκ
{
Bd(t, r)

}
, ∀t ∈ T, ∀r > 0,

where Bd(t, r) is the closed ball with center t and radius r. For example, if T = Rd and κ is Lebesgue
measure then Q = 2d.

As it was proved in Coifman and Weiss (1971) the existence of a doubling measure on T implies
that the space T is doubling. It means that there exists Nd ∈ N∗ depending only on Q such that
for any r > 0 each closed ball in T of radius r can be covered by at most Nd closed balls of radius
r/2. This yields that B(t, r) is totally bounded for any t ∈ T, r > 0 and, moreover,

EBd(t,r), d(δ) ≤ ln (Nd)
[
log2

(
2r/δ

)]
+

, ∀δ > 0.

Let t ∈ T and r > 0 be fixed. In this section, using Proposition 4 we establish the upper function
for local modulus of continuity of χθ on Θ := Bd(t, r). The simplest consequence of this result will
be the law of iterated logarithm (LIL) for |χθ−χt| as well as its non-asymptotical version. Studying
the local modulus of continuity we are obviously interested in the case when r is small even r → 0.
Thus, without loss of generality we will assume that r ≤ 1.

To apply Proposition 4 we need to define the function gA, A(·) =
√

2ρ(· − t), to choose the
function s1 ∈ Sa,0, and to compute the function Ê(ε)(∆, t), ∆ ∈ (0, r], ε ∈ (

0,
√

2− 1
]
, given by

Ê(ε)(∆, t) = e(a)
s1

(
gA

(
[1 + ε]∆

)
,Bd

(
t, [1 + ε]∆

))
, a =

√
2ρ.

Introduce the function
ψ(x) =

√
2 sup

θ1,θ2∈Bd

(
t,1

)
:

d
(
θ1,θ2

)
≤x

ρ
(
θ1, θ2

)
, x ∈ (0, 2],

and suppose that ψ(2) < ∞. Note that obviously ψ(0) = 0, since d is a metric, and ψ is increasing.
Moreover, for any u ∈ (0, r]

g∗A(u) :=
√

2 sup
θ: d(θ,t)≤u

ρ(θ, t) ≤ ψ(u),

that allows us to put gA = ψ. Denoting ψ−1 the inverse function of ψ we assert that ∀u ∈ (0, r]

EBd(t,u),
√

2ρ(δ) ≤ EBd(t,u), d

(
ψ−1(δ)

)
≤ ln (Nd)

[
log2

{
2u

/
ψ−1(δ)

}]
+

, ∀δ > 0. (3.1)

Hence, if the function ψ is such that Assumption 3 is fulfilled then Proposition 4 is applicable and
that provides us with the upper function for |χθ − χt| on Bd(t, r). However, this upper function
does not admit an explicit expression, in particular its dependence on the variable ∆ cannot be
analyzed in general. So, we prefer to impose an additional assumption on the function ψ that allows
us to obtain the explicit expression of the upper function for |χθ −χt| and analyze it as well as the
corresponding probability bound for small values of the radius r. We will not be tending here to
the maximal generality and suppose that there exist 0 < c ≤ c < ∞ and β > 0 such that

cuβ ≤ ψ(u) ≤ cuβ, ∀u ∈ (0, 1]. (3.2)
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For example, if d = ρ one has ψ(u) =
√

2u, and, therefore, (3.2) holds. Under (3.2) obviously
(
δ/c

) 1
β ≤ ψ−1(δ) ≤ (

δ/c
) 1

β and we get from (3.1)

EBd(t,u),
√

2ρ(δ) ≤ ln (Nd)
[
log2

{
2u

(
δ/c

)− 1
β

}]

+
, ∀δ > 0. (3.3)

Taking into account that gA(u) = ψ(u) ≥ cuβ and choosing s(x) = s∗(x) = (6/π2)
(
1 + [lnx]2

)−1
,

we obtain from (3.3) for any ∆ ∈ (0, r]

Ê(ε)(∆, t) = sup
δ>0

δ−2EBd

(
t,[1+ε]∆

)
,
√

2ρ

(
gA

(
[1 + ε]∆

)
(48δ)−1s(δ)

)

≤ sup
δ>0

δ−2EBd

(
t,[1+ε]∆

)
,
√

2ρ

(
c
(
[1 + ε]∆

)β(48δ)−1s(δ)
)

≤ β−1 ln (Nd) sup
δ>0

δ−2
[
log2

(
96c

c

)
+ log2

(
δ

s∗(δ)

)]

+

=: C(β, c, c,d).

As we see Ê(ε)(∆, t) is independent of ∆, t and bounded from above by the constant which is
completely determined by the triplet (T, d,κ) and by the quantities c, c and β. Thus, in view of
Proposition 4 the upper function for has the following form (see also Remark 5).

V̂
(z,ε)
s∗ (∆, t) = c(1 + ε)1+2β∆β

√
2
[
1 + ε−1

]2C(β, c, c,d) +
[
`
(
2(1 + ε)r

/
∆

)
+ z

]
,

where, remind, `(y) = ln {1 + ln (y)}+ 2 ln {1 + ln {1 + ln (y)}}, y > 0.

Choose z = z(r) = ln
{
1 + ln

{
1 +

∣∣ ln (r)
∣∣}}

and ε = ε(r) := z−1(r) and define

a(r) = (1 + ε(r))1+2β


 sup

∆∈(0,r]

√√√√√2
[
1 + ε−1(r)

]2C(β, c, c,d) +
[
`
(
2[1 + ε(r)]r

/
∆

)
+ z(r)

]

ln
{
1 +

∣∣ ln (∆)
∣∣}


 ;

p(r) =
2 +

[
ln {1 + ln (1 + ε(r))}

]−2

1 + ln
{
1 +

∣∣ ln (r)
∣∣} .

We note that if r → 0 then

a(r) = 1 +O
(

ln
{
1 + ln

{
1 +

∣∣ ln (r)
∣∣}}

ln
{
1 +

∣∣ ln (r)
∣∣}

)
, p(r) = O

([
ln

{
1 + ln

{
1 +

∣∣ ln (r)
∣∣}}]2

ln
{
1 +

∣∣ ln (r)
∣∣}

)
. (3.4)

The following result is immediate consequence of Proposition 4. Put m(∆) = supθ∈Bd(t,∆) |χθ −χt|.
Theorem 2. Let T be doubling space and suppose that (3.2) holds. Then, we have for any t ∈ T

and any r ∈ (0, 1)

P





sup
∆∈

(
0,r

]


 m(∆)

c∆β
√

ln
{
1 +

∣∣ ln (∆)
∣∣}


 ≥ a(r)




≤ 8p(r).

The first consequence of Theorem 2 is the law of iterated logarithm. Indeed, taking into account
that p(r) → 0, a(r) → 1, r → 0, we come to the following assertion.
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Corollary 2. Let T be doubling space and suppose that (3.2) holds. Then for any t ∈ T P− a.s.

lim sup
∆→0+


 m(∆)

∆β
√

ln
{
1 +

∣∣ ln (∆)
∣∣}


 ≤ c.

We note, that although the statement of Corollary 2 is traditional in probability theory, the
non-asymptotical statement of Theorem 2 is much more informative.

The next consequence of Theorem 2 seems more curious. We remark that if T is doubling with
respect to the intrinsic semi-metric ρ, then the normalizing sequence appeared in the theorem is
independent of ρ. Moreover, the function a(·) depends only on ρ.

Indeed, if d = ρ then φ(u) =
√

2u, and therefore, β = 1 and c = c =
√

2. It yields, in particular,
that C(β, c, c, ρ) = CNρ , where

CNρ = ln (Nρ) sup
δ>0

δ−2
([

3 + 2 log2 (π) + log2

{
δ
(
1 + [ln δ]2

)}]
+

+ 1
)

,

and, therefore, a(·) = aNρ(·), where aNρ(·) is completely determined by ρ via the quantity Nρ.

Corollary 3. Let T be doubling space with respect to d = ρ. Then, for any t ∈ T and r ∈ (0, 1)

P





sup
∆∈

(
0,r

]


 m(∆)

∆
√

2 ln
{
1 +

∣∣ ln (∆)
∣∣}


 ≥ aNρ(r)




≤ 8p(r).

We note that if R∗ be the set of metrics ρ for which T is doubling and such that Nρ ≤ N∗ for
some fixed N∗ ∈ N∗ then the function aNρ(·) in the assertion of Corollary 3 can be replaced by the
universal on R∗ function aN∗(·). The corresponding inequality becomes ”metric free”.

We finish this section by the consideration of several examples, where the condition (3.2) is
verified. In these examples T is either Rd or Rd

+, d ≥ 1, κ is Lebesgue measure and d is the
euclidian distance.

Example 1. Lévy function Here χt, t ∈ Rd, is zero-mean gaussian random field with ρ =
√

d.
Hence, (3.2) holds with c = c =

√
2 and β = 1/2. We deduce from Theorem 2 that

P





sup
∆∈

(
0,r

]


 m(∆)√

2∆ ln
{
1 +

∣∣ ln (∆)
∣∣}


 ≥ a(r)




≤ 8p(r), r ∈ (0, 1).

Example 2. Fractional brownian motion Here χt, t ∈ R+, is zero-mean gaussian random
process with ρ = dα/2, α ∈ (0, 2]. Hence, (3.2) holds with c = c =

√
2 and β = α/2. We get from

Theorem 2

P





sup
∆∈

(
0,r

]


 m(∆)√

2∆α ln
{
1 +

∣∣ ln (∆)
∣∣}


 ≥ a(r)




≤ 8p(r), r ∈ (0, 1).
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Example 3. Ornstein-Uhlenbeck process Here χt, t ∈ R+, is given by

χt =
σ√
2λ

b
(
e2θt

)
e−λt, λ, σ > 0,

where b is the standard Wiener process. In this case ρ = λ−1/2σ
√

1− exp {−λd}. Since we consider
r ∈ (0, 1) then (3.2) holds with c = σ

√
2e−1e−λ/2, c = σ

√
2, β = 1/2 and we have

P





sup
∆∈

(
0,r

]


 m(∆)

σ
√

2∆ ln
{
1 +

∣∣ ln (∆)
∣∣}


 ≥ a(r)




≤ 8p(r), r ∈ (0, 1).

4. Proof of Propositions 1-3

We start this section with establishing an auxiliary result. Let L be a set, d1 and d2 be semi-metrics
on L and let L be a totally bounded subset of L with respect to d1 and d2 simultaneously. Let
Ni(δ), δ > 0, denote the minimal number of balls of the radius δ in the metric di, i = 1, 2 needed
to cover the set L.

Lemma 2. Let l ∈ N∗ and δ1,j , δ2,j > 0, j = 1, l be an arbitrary numbers. One can construct the

finite subset L
([

δ1,j , δ2,j
]
, j = 1, l

)
:= {`1, . . . , `N} ⊂ L with N ≤ ∏l

j=1 N1

(
δ1,j/2

)
N2

(
δ2,j/2

)
and

such that

∀` ∈ L ∃˜̀∈ L(
[
δ1,j , δ2,j

]
, j = 1, l

)
: d1

(
`, ˜̀) ≤ min

j=1,l
δ1,j , d2

(
`, ˜̀) ≤ min

j=1,l
δ2,j .

Proof of Lemma 2 Set Ni,j = Ni
(
δi,j/2

)
, i = 1, 2, j = 1, l. Since L is totally bounded in

di, i = 1, 2 there exist L(i,j) =
{
`
(i,j)
1 , . . . , `

(i,j)
Ni,j

}
⊂ L such that

∀` ∈ L ∃ ˜̀∈ L(i,j) : di
(
`, ˜̀) ≤ 2−1δi,j , i = 1, 2, j = 1, l.

For any ki = 1, . . . Ni,j , i = 1, 2, put L(i,j)
ki

=
{
` ∈ L : di

(
`, `

(i,j)
ki

)
≤ 2−1δi,j

}
and let L(j)

k1,k2
=

L(1,j)
k1

∩ L(2,j)
k2

. First we note that for any j = 1, l

L =
N1,j⋃

k1=1

N2,j⋃

k2=1

L(j)
k1,k2

(4.1)

Moreover, the construction of L(1,j)
k1

and L(2,j)
k2

implies that

di
(
l1, l2

) ≤ δi,j , i = 1, 2, ∀l1, l2 ∈ L(j)
k1,k2

. (4.2)

Put N = ⊗l
j=1

[
{1, . . . N1,j} × {1, . . . N2,j}

]
and define for any

(
k(1), . . . , k(l)

) ∈ N

Lk(1),...,k(l) =
l⋂

j=1

L(j)

k(j) .

The choice of an arbitrary point in each Lk(1),...,k(l) leads to the construction of L
([

δ
(j)
1 , δ

(j)
2

]
, j = 1, l

)

in view of (4.1) and (4.2).
It remains to note that the cardinality of N is equal to

∏l
j=1 N1

(
δ1,j/2

)
N2

(
δ2,j/2

)
.

17



4.1. Proof of Proposition 1

I. Probability bound Fix ~s ∈ Sa,b and put s1,k = s1

(
2k/2

)
and s2,k = s2

(
2k

)
, k ≥ 0. For

any k ≥ 0 put δ1(k) = (24)−1κ̃12−k/2s1,k, δ2(k) = (24)−1κ̃22−ks2,k and note that δ1(k), δ2(k) →
0, k →∞ since s1, s2 ∈ S.

Let Zk = L
([

δ1(k), δ2(k)
])

, k ≥ 0, be the set constructed in Lemma 2 with d1 = a, d2 = b,

L = Θ̃ and l = 1. By Nk, k ≥ 0, we denote the cardinality of Zk.
Fix ε > 0 and put ε = ε/(1 + ε), k0 =

⌊
2 ln2 (1/ε)

⌋
+ 1. Let θm, m = 1, . . . , Nk0 , be the elements

of Zk0 . For any m = 1, . . . , Nk0 define

Θ(m) =
{
θ ∈ Θ̃ : a(θ, θm) ≤ δ1(k0), b(θ, θm) ≤ δ2(k0)

}
,

and remark that the definition of the sets Zk0 implies that Θ̃ =
⋃Nk0

m=1 Θ(m).
In view of the last remark we get

P

{
sup
θ∈Θ̃

Ψ(χθ) ≥ U
(ε)
~s (y, κ̃, Θ̃)

}
≤

Nk0∑

m=1

P

{
sup

θ∈Θ(m)

Ψ(χθ) ≥ U
(ε)
~s (y, κ̃, Θ̃)

}
. (4.3)

For any θ ∈ Θ̃ let zk(θ) be an arbitrary element of Zk satisfying

a
(
θ, zk(θ)

) ≤ δ1(k), b
(
θ, zk(θ)

) ≤ δ2(k). (4.4)

Fix m = 1, . . . , Nk0 . The continuity of the mapping θ 7→ χθ guarantees that P-a.s.

χθ = χθm +
∞∑

k=k0+1

[
χzk(θ) − χzk−1(θ)

]
, ∀θ ∈ Θ(m), (4.5)

where zk0(θ) = θm, ∀θ ∈ Θ(m). Note also that independently of θ for all k ≥ k0 + 1

a
(
zk(θ), zk−1(θ)

) ≤ δ1(k) + δ1(k − 1) =: δ̃1(k), (4.6)

b
(
zk(θ), zk−1(θ)

) ≤ δ2(k) + δ2(k − 1) =: δ̃2(k). (4.7)

This is the simplest consequence of triangle inequality and (4.4). Introduce the sequence ck, k ≥ 1:

ck = 4−1 max {s1,k, s1,k−1, s2,k, s2,k−1}
and remark that

∑
k≥1 ck ≤ 1 that follows from the assumption s1, s2 ∈ S.

We get from sub-additivity of Ψ, (4.5), (4.6) and (4.7) for any θ ∈ Θ(m)

Ψ(χθ) ≤ Ψ(χθm) + sup
k≥k0+1

sup
(u,v)∈Zk×Zk−1:

a(u,v)≤δ̃1(k), b(u,v)≤δ̃2(k)

c−1
k Ψ(χu − χv) , (4.8)

To simplify the notations we will write U instead of U
(ε)
~s (y, κ̃, Θ̃) and E instead of e~s(κ̃, Θ̃).

We obtain from (4.8)

P

{
sup

θ∈Θ(m)

Ψ(χθ) ≥ U

}
≤ P

{
Ψ(χθm) ≥ U(1 + ε)−1

}
(4.9)

+
∞∑

k=k0+1

∑

(u,v)∈Zk×Zk−1:

a(u,v)≤δ̃1(k), b(u,v)≤δ̃2(k)

P
{
Ψ(χu − χv) ≥ εUck

}
=: I1 + I2.
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We have in view of Assumption 1 (1)

P
{
Ψ(χθm) ≥ U(1 + ε)−1

}
≤ c exp

{
− (1 + ε)−2U2

{
A (θm)

}2 + (1 + ε)−1UB (θm)

}

≤ c exp

{
−(1 + ε)−2U2

κ̃2
1 + U κ̃2

}
≤ c exp

{
−(1 + ε)−2(y + 2ε−2E)}

≤ c exp
{
−(1 + ε)−2y − ε−2E

}
. (4.10)

In order to get (4.10) we have first used that κ̃1 ≥ sup
θ∈Θ̃

A(θ), κ̃2 ≥ sup
θ∈Θ̃

B(θ). Next, we have
used that U ≥ v, where v is the maximal root of the equation

u2

κ̃2
1 + uκ̃2

= y + 2ε−2E . (4.11)

We also have used that (1 + ε)−2 ≥ 1/2.
In view of Assumptions 1 (2), 2, (4.6) and (4.7) for any u, v ∈ Zk × Zk−1 satisfying a(u, v) ≤

δ̃1(k), b(u, v) ≤ δ̃2(k) we have

P {Ψ(χu − χv) ≥ εUck} ≤ c exp

{
−

(
εUck

)2

{
a(u, v)

}2 +
(
εUck

)
b(u, v)

}

≤ c exp




− (εU)2

{
δ̃1(k)c−1

k

}2
+ U

{
δ̃2(k)c−1

k

} .





(4.12)

Here we have used that ε < 1. Let us remark that

δ̃1(k)c−1
k ≤ 4(24)−1κ̃1

(
2−k/2s1,k + 2−(k−1)/2s1,k−1

)
min

{
s−1
1,k, s

−1
1,k−1

}
≤ κ̃12−k/2−1;

δ̃2(k)c−1
k ≤ 4(24)−1κ̃2

(
2−ks2,k + 2−k+1s2,k−1

)
min

{
s−1
2,k, s

−1
2,k−1

}
≤ κ̃22−k−1.

Thus, continuing (4.12) we obtain

P {Ψ(χu − χv) ≥ εUck} ≤ c exp

{
−2k+1ε2 U2

κ̃2
1 + U κ̃2

}
≤ c exp

{
−2k+1ε2

(
y + 2ε−2E)}

. (4.13)

Here we have used (4.11). Noting that the right hand side of (4.13) does not depend on u, v we get

I2 ≤ c
∞∑

k=k0+1

NkNk−1 exp
{
−2k+1ε2

(
y + 2ε−2E)}

≤ c exp (−y)
∞∑

k=k0+1

NkNk−1 exp
{
−2k+2E − 2k−k0

}
. (4.14)

Here we have used the definition of k0 and that y ≥ 1.
Let us make several remarks. First we note that in view of Lemma 2

ln
(
Nk

) ≤ E
Θ̃, a

(
(24)−1κ̃12−1−k/2s1,k

)
+ E

Θ̃, b

(
(24)−1κ̃22−k−1s2,k

)
.
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Taking into account that s1,k = s1
(
2k/2

)
and denoting δ1 = 2k/2 we obtain from (1.9)

E
Θ̃, a

(
(24)−1κ̃12−1−k/2s1,k

)
= E

Θ̃, a

(
κ̃1(48δ1)−1s1(δ1)

)
≤ δ2

1e
(a)
s1

(
κ̃1, Θ̃

)
= 2ke(a)

s1

(
κ̃1, Θ̃

)
.

Taking into account that s2,k = s1
(
2k

)
and denoting δ2 = 2k we obtain from (1.9)

E
Θ̃, b

(
(24)−1κ̃22−1−ks2,k

)
= E

Θ̃, b

(
κ̃2(48δ2)−1s2(δ2)

)
≤ δ2e

(b)
s2

(
κ̃2, Θ̃

)
= 2ke(b)

s2

(
κ̃2, Θ̃

)
.

Thus, we have for any k ≥ 1

ln
(
NkNk−1

) ≤ 2k+1
[
e(a)
s1

(Θ̃) + e(b)
s2

(Θ̃)
]

= 2k+1E (4.15)

and, therefore, ∀k ≥ k0 + 1

ln
(
NkNk−1

)− 2k+2E ≤ −2k0+2E ≤ −4ε−2E .

It yields together with (4.14)

I2 ≤ c exp
{
−y − 4ε−2E

}
. (4.16)

We get from (4.9), (4.10) and (4.16) for any m = 1, . . . , Nk0

P

{
sup

θ∈Θ(m)

Ψ(χθ) ≥ U

}
≤ 2c exp

{
−y(1 + ε)−2 − ε−2E

}
. (4.17)

The last bound is independent of m and we have from (4.3) and (4.17)

P

{
sup
θ∈Θ̃

Ψ(χθ) ≥ U

}
≤ 2cNk0 exp

{
−y(1 + ε)−2 − ε−2E

}
.

It remains to note that (1− 3ε)2 = (1 + ε)−1 and that, similarly to (4.15),

ln
(
Nk0

) ≤ 2k0E ≤ ε2E ,

and we come to the first assertion of the proposition.

II. Moment’s bound We get for any y ≥ 1

E := E

(
sup
θ∈Θ̃

Ψ(χθ)− U

)q

+

= q

∫ ∞

0
xq−1P

{
sup
θ∈Θ̃

Ψ(χθ) ≥ U + x

}
dx

= q [U ]q
∫ ∞

0
vq−1P

{
sup
θ∈Θ̃

Ψ(χθ) ≥ (1 + v)U

}
dv. (4.18)

Note that (1+v)U ≥ U
(ε)
~s

(
(1+v)y, κ̃, Θ̃

)
. Therefore, applying the first statement of the proposition,

where y is replaced by vy we obtain from (4.18)

E ≤ 2cΓ(q + 1)
[
(1 + ε)2y−1U

]q
exp {−y/(1 + ε)2}.
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4.2. Proof of Proposition 2

We start with establishing some technical results used in the sequel.

Preliminaries 10. First we formulate the simple consequence of Proposition 1.
Let Θ1,Θ2 be given subsets of Θ. For any ~s = (s1, s2) ∈ Sa,b and any κ = (κ1,κ2) ∈ R2

+ \ {0}
introduce the following quantity

e~s

(
κ, Θ1, Θ2

)
= e(a)

s1

(
κ1, Θ1

)
+ e(b)

s2

(
κ2,Θ2

)
.

Put any ε > 0 and any y ≥ 0

U
(ε)
~s

(
y,κ, Θ1, Θ2

)
= κ1

√
2
[
1 + ε−1

]2
e~s

(
κ, Θ1, Θ2

)
+ y + κ2

(
2
[
1 + ε−1]2e~s

(
κ, Θ1, Θ2

)
+ y

)
.

Lemma 3. Let Assumptions 1-3 hold and let Θ1,Θ2 be given subsets of Θ. Let κ be chosen such
that κ1 ≥ supθ∈Θ1

A(θ) and κ2 ≥ supθ∈Θ2
B(θ). Then ∀~s ∈ Sa,b, ∀ε ∈

(
0,
√

2− 1
]

and ∀y ≥ 1,

P

{
sup

θ∈Θ1∩Θ2

Ψ(χθ) ≥ U
(ε)
~s

(
y,κ, Θ1, Θ2

)
}
≤ 2c exp

{
−y/(1 + ε)2

}
.

Moreover, for any q ≥ 1, putting Cε,q = 2cΓ(q + 1)(1 + ε)2q, one has

E

{
sup

θ∈Θ1∩Θ2

Ψ(χθ)− U
(ε)
~s

(
y,κ, Θ1,Θ2

)
}q

+

≤ Cε,q

[
y−1U

(ε)
~s

(
y,κ, Θ1, Θ2

)]q
exp

{
− y

(1 + ε)2

}
.

To prove the lemma it suffices to note the following simple facts. In view of the assumptions
imposed on κ and obvious inclusions Θ1 ∩Θ2 ⊆ Θ1, Θ1 ∩Θ2 ⊆ Θ2 we have

κ1 ≥ sup
θ∈Θ1∩Θ2

A(θ), κ2 ≥ sup
θ∈Θ1∩Θ2

B(θ), e~s

(
κ, Θ1, Θ2

) ≥ e~s

(
κ, Θ1 ∩Θ2

)
.

It yields U
(ε)
~s

(
y,κ, Θ1, Θ2

) ≥ U
(ε)
~s

(
y,κ, Θ1 ∩ Θ2

)
and to get the assertion of the lemma we apply

Proposition 1 with Θ̃ = Θ1 ∩Θ2.

20. Note that Ψ
(
χ•

)
: Θ → R+ is obviously P-a.s. continuous in a ∨ b as a composition of two

continuous mappings between metric spaces. Hence Corollary 1 is applicable with T = Θ, d = a∨b,
(Ω, B,P) = (Ω, B, P) ζ(t, ·) = Ψ

(
χθ(·)

)
and g(t) is either V(z,ε)

~s (θ) or U(z,ε,q)
~s (θ), t = θ.

Proof of the proposition Put δl = (1 + ε)l, l ≥ 0, and introduce the following sets

Θ(l)
A = {θ ∈ Θ : Aδl−1 ≤ A(θ) ≤ Aδl} , Θ(l)

B = {θ ∈ Θ : Bδl−1 ≤ B(θ) ≤ Bδl} , l ∈ N∗.

The idea is to apply Lemma 3 with Θ1 = Θ(j)
A and Θ2 = Θ(k)

B for any given j, k ≥ 1. To do that we
will need to bound from below V(z,ε)

~s (θ) and U(z,ε,q)
~s (θ) on Θ(j)

A ∩ Θ(k)
B . We will consider only j, k

such that Θ(j)
A ∩Θ(k)

B 6= ∅ and supremum over empty set is assumed to be zero. Also we will accept
the following agreement: if B ≡ 0, b ≡ 0 then k ≡ 0 and Θ(0)

B = Θ̂.
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Probability bound Let θ ∈ Θ(j)
A ∩Θ(k)

B be fixed and put u = Aε(θ), v = Bε(θ). Note that

e(a)
s1

(
Au,ΘA

(
Au

)) ≥ e(a)
s1

(
Au,ΘA

(
Aδj

)) ≥ e(a)
s1

(
Au, Θ(j)

A

)
≥ e(a)

s1

(
Aδj+1, Θ

(j)
A

)
. (4.19)

To get the first two inequalities in (4.19) we have used that Θ(j)
A ⊆ ΘA

(
Aδj

) ⊆ ΘA

(
Au

)
in view

of δj ≤ u since θ ∈ Θ(j)
A . To get the last inequality in (4.19) we have used that the entropy is

decreasing function of its argument and that δj+1 ≥ u since θ ∈ Θ(j)
A .

By the same reasons

e(b)
s2

(
Bv, ΘB

(
Bv

)) ≥ e(b)
s2

(
Bv, ΘB

(
Bδk

)) ≥ e(b)
s2

(
Bv, Θ(k)

B

)
≥ e(b)

s2

(
Bδk+1, Θ

(k)
B

)
. (4.20)

Taking into account that left hand sides in (4.19) and (4.20) are independent of θ, whenever
θ ∈ Θ(j)

A ∩Θ(k)
B , we deduce from (2.3), (4.19) and (4.20)

E~s

(
Aε(θ),Bε(θ)

)
:= e(a)

s1

(
Au,ΘA

(
Au

))
+ e(b)

s2

(
Bv, ΘB

(
Bv

))

≥ e(a)
s1

(
Aδj+1,Θ

(j)
A

))
+ e(b)

s2

(
Bδk+1, Θ

(k)
B

)
= e~s

(
κ, Θ(j)

A , Θ(k)
B

)
, (4.21)

for any θ ∈ Θ(j)
A ∩Θ(k)

B , where we put κ =
(
Aδj+1, Bδk+1

)
.

We obtain from (4.21), putting y = (1 + ε)2
[
z + `

(
δj

)
+ `

(
δk

)]
,

V(z,ε)
~s (θ) ≥ U

(ε)
~s

(
y,κ, Θ(j)

A ,Θ(k)
B

)
, ∀θ ∈ Θ(j)

A ∩Θ(k)
B . (4.22)

Here we have also used that obviously (1+ε)2A(θ) ≥ Aδj+1 =: κ1 and (1+ε)2B(θ) ≥ Bδk+1 =: κ2

for any θ ∈ Θ(j)
A ∩Θ(k)

B . Moreover, we have used that 2
[
1 + ε−1

]2 ≥ 4ε−2 for any ε ∈ (
0,
√

2− 1
]
.

Therefore, we obtain ∀j, k ≥ 1 in view of (4.22)

Ψ∗
j,k(z) := sup

θ∈Θ
(j)
A ∩Θ

(k)
B

{
Ψ(χθ)−V(z,ε)

~s (θ)
}
≤ sup

θ∈Θ
(j)
A ∩Θ

(k)
B

Ψ(χθ)− U
(ε)
~s

(
y,κ, Θ(j)

A , Θ(k)
B

)
.

Since κ1 := Aδj+1 ≥ sup
θ∈Θ

(j)
A

A(θ) and κ2 := Bδk+1 ≥ sup
θ∈Θ

(k)
B

B(θ), Lemma 3 is applicable with

Θ1 = Θ(j)
A and Θ2 = Θ(k)

B . Thus, applying it we obtain ∀j, k ≥ 1 and ∀z ≥ 1

P
{
Ψ∗

j,k(z) ≥ 0
}
≤ 2c exp {−z}wjwk, (4.23)

where we put wm =
[
1 + m ln (1 + ε)

]−1[
1 + ln {1 + m ln (1 + ε)}

]−2
. Noting that

∞∑

m=1

wm ≤ 1 +
[
ln {1 + ln (1 + ε)}

]−2
,

taking into account that the union of
{
Θ(j)

A ∩Θ(k)
B , j, k ≥ 1,

}
covers Θ and summing up the right

hand side in (4.23) over j, k, we arrive at the first assertion of the proposition.
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Moment’s bound Using the same arguments having led to (4.22) and taking into account (4.21)
we obtain for any θ ∈ Θ(j,k) and any q ≥ 1

U(z,ε,q)
~s (θ) ≥ U

(ε)
~s

(
y,κ, Θ(j)

A , Θ(k)
B

)
,

where y = (1 + ε)2
[
z + τεe~s

(
κ, Θ(j)

A , Θ(k)
B

)
+ (ε + q) ln

(
δjδk

)]
, τε = 2(2 + ε)ε−1.

Thus, applying the second assertion of Lemma 3, ∀j, k ≥ 1 and ∀z ≥ 1

Ej,k := E

(
sup

θ∈Θ(j,k)

Ψ(χθ)− U
(ε)
~s

(
y,κ, Θ(j)

A , Θ(k)
B

))q

+

≤ 2cΓ(q + 1)




U
(ε)
~s

(
y,κ, Θ(j)

A ,Θ(k)
B

)

z + τεe~s

(
κ, Θ(j)

A ,Θ(k)
B

)
+ (ε + q) ln

(
δjδk

)




q

(
δjδk

)−ε−q exp {−z}. (4.24)

Putting for brevity ej,k = e~s

(
κ, Θ(j)

A , Θ(k)
B

)
and noting that for any j, k ≥ 1 and z ≥ 1

U
(ε)
~s

(
y,κ, Θ(j)

A , Θ(k)
B

)
≤ 2

[
κ1 ∨ κ2

] [
4ε−2ej,k + y

]
≤ 2

[
A ∨B

][
δj+1 ∨ δk+1

][
2(1 + ε−1)2ej,k + y

]
,

and that for any ε ∈ (
0,
√

2− 1
]

2(1 + ε−1)2ej,k + (1 + ε)2
[
z + τεej,k + (ε + q) ln

(
δjδk

)]

z + τεej,k + (ε + q) ln
(
δj ∨ δk

) ≤ (1 + ε)4(2ε)−1,

we get finally from (4.24) for j, k ≥ 1

Ej,k ≤ 2cΓ(q + 1)
[
ε−1(1 + ε)5

]q[
A ∨B

]q(
δjδk

)−ε exp {−z}. (4.25)

Here we have used that (δj ∨ δk)/(δjδk) ≤ 1 since δj , δk ≥ 1. Taking into account that

E

(
sup
θ∈Θ

{
Ψ(χθ)−U(z,ε,q)

~s (θ)
})q

+

≤
∞∑

j=1

∞∑

k=1

Ej,k

and that
∑∞

j=1

∑∞
k=1

(
δjδk

)−ε =
[
(1+ε)ε−1

]−2, we come to the second assertion of the proposition
in view of (4.25), where one can replace (1 + ε)5 par 25/2 since ε ∈ (

0,
√

2− 1
]
. We have also used

that
[
(1 + ε)ε − 1

]−2 ≤ 2ε−4 since ε ∈ (
0,
√

2− 1
]
.

4.3. Proof of Proposition 3

First we discuss the measurability issue. Note that Ψ
(
χ•

)
: Θ → R+ is obviously P-a.s. continuous

in a ∨ b as a composition of two continuous mappings between metric spaces. Hence Lemma 1 is
applicable with T = Θ, d = a ∨ b, (Ω, B,P) = (Ω,B, P) ζ(t, ·) = Ψ

(
χθ(·)

)
, t = θ, Z = A, Tζ = Θα

and g(z) = Û(z,ε,r)(α), z = α.
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The proof of the proposition is similar to those of Proposition 2. Let ε ∈ (
0,
√

2−1
]

be fixed and
put δl = (1 + ε)−l, l ≥ 0, δl = 1, l < 0. Introduce the following sets:

A
(l)
1 = {α ∈ A : τ1δl+1 ≤ τ1(α) ≤ τ1δl} , A

(l)
2 = {α ∈ A : τ2δl+1 ≤ τ2(α) ≤ τ2δl} , l ∈ N.

Fix j, k ≥ 0, α ∈ A
(j)
1 ∩ A

(k)
2 and put u = (1 + ε)τ1(α), v = (1 + ε)τ2(α). Note that

e
(a)
s1(u,·)

(
λ−1

1 gA(u), Θ′
1(u)

)
≥ e

(a)
s1(u,·)

(
λ−1

1 gA(u), Θ′
1

(
τ1δj

))

≥ e
(a)
s1(u,·)

(
λ−1

1 gA

(
τ1δj−1

)
, Θ′

1

(
τ1δj

))
. (4.26)

To get the first inequality in (4.26) we have used that Θ′
1

(
τ1δj

) ⊆ Θ′
1(u) in view of τ1δj ≤ u since

α ∈ A
(j)
1 . To get the second inequality in (4.26) we have used that gA

(
τ1δj−1

) ≥ gA(u), since gA

is increasing and τ1δj−1 ≥ u for α ∈ A
(j)
1 . Moreover we have used that the entropy is decreasing

function of its argument.
Remembering the definition of e

(a)
s1(u,·)

(
λ−1

1 gA

(
τ1δj−1

)
,Θ′

1

(
τ1δj

))
, see (1.9), we have

e
(a)
s1(u,·)

(
λ−1

1 gA

(
τ1δj−1

)
, Θ′

1

(
τ1δj

))
= sup

δ>0
δ−2E

Θ′1
(
τ1δj

)
, a

(
λ−1

1 gA

(
τ1δj−1

)
(48δ)−1s1(u, δ)

)

= sup
δ>0

δ−2E
Θ′1

(
τ1δj

)
, a

(
λ−1

1 gA

(
τ1δj−1

)
(48δ)−1s1 (τ1δj , δ)

[
s1(u, δ)

s1 (τ1δj , δ)

])

≥ sup
δ>0

δ−2E
Θ′1

(
τ1δj

)
, a

(
gA

(
τ1δj−1

)
(48δ)−1s1 (τ1δj , δ)

)

=: e
(a)

s1

(
τ1δj ,·

)
(
gA

(
τ1δj−1

)
, Θ′

1

(
τ1δj

))
. (4.27)

To get (4.27) we have used that 1 ≤ u/τ1δj ≤ 1 + ε ≤ √
2, the definition of λ1 and, as previously,

that the entropy is decreasing function of its argument. We obtain from (4.26) and (4.27)

e
(a)
s1(u,·)

(
λ−1

1 gA(u), Θ′
1(u)

)
≥ e

(a)

s1

(
τ1δj ,·

)
(
gA

(
τ1δj−1

)
, Θ′

1

(
τ1δj

))
. (4.28)

By the same reasons we have

e
(b)
s2(v,·)

(
λ−1

2 gB(v), Θ′
2(v)

)
≥ e

(b)

s2

(
τ2δk,·

)
(
gB

(
τ2δk−1

)
, Θ′

2

(
τ2δk

))
, (4.29)

and, we get from (4.28) and (4.29) for any α ∈ A
(j)
1 ∩ A

(k)
2

Ê(ε)(α) := E ′(u, v) ≥ e
(a)

s1

(
τ1δj ,·

)
(
gA

(
τ1δj−1

)
,Θ′

1

(
τ1δj

))
+ e

(b)

s2

(
τ2δk,·

)
(
gB

(
τ2δk−1

)
,Θ′

2

(
τ2δk

))

= e~s

(
κ, Θ′

1

(
τ1δj

)
, Θ′

2

(
τ2δk

))
, (4.30)

where we have put κ =
(
gA

(
τ1δj−1

)
, gB

(
τ2δk−1

))
and ~s =

(
s1

(
τ1δj , ·

)
, s2

(
τ2δk, ·

))
.

Note also that for any α ∈ A
(j)
1 ∩ A

(k)
2 in view of monotonicity of functions gA and gB

gA

(
[1 + ε]2τ1(α)

)
≥ gA

(
τ1δj−1

)
=: κ1, gB

(
[1 + ε]2τ2(α)

)
≥ gA

(
τ2δk−1

)
=: κ2. (4.31)
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Moreover, the definition of sets Θ′
1(·) and Θ′

2(·) implies that for any α ∈ A
(j)
1 ∩ A

(k)
2

Θα ⊆ Θ′
1

(
τ1δj

) ∩Θ′
2

(
τ2δk

)

and, therefore, for any α ∈ A
(j)
1 ∩ A

(k)
2

sup
θ∈Θα

Ψ(χθ) ≤ sup
θ∈Θ′1

(
τ1δj

)
∩Θ′2

(
τ2δk

) Ψ(χθ) . (4.32)

Probability bound We get from (4.30) and (4.31) for any α ∈ A
(j)
1 ∩ A

(k)
2

Û(z,ε,0)(α) ≥ U
(ε)
~s

(
y,κ, Θ′

1

(
τ1δj

)
, Θ′

2

(
τ2δk

))
, y = (1 + ε)2

[
z + R0

(
τ1δj , τ2δk

)]
,

where we have used that R0 is increasing/deacreasing, in both arguments, function.
It yields together with (4.32) ∀j, k ≥ 0

Ψ(V )
j,k (z) := sup

α∈A
(j)
1 ∩A

(k)
2

(
sup
θ∈Θα

{
Ψ(χθ)− Û(z,ε,0)(α)

})

≤ sup
θ∈Θ′1

(
τ1δj

)
∩Θ′2

(
τ2δk

)) Ψ(χθ)− U
(ε)
~s

(
y,κ,Θ′

1

(
τ1δj

)
,Θ′

2

(
τ2δk

))
.

Let us remark that the definition of the sets Θ′
A(·), Θ′

B(·) and the functions gA and gB as well as
their monotonicity imply that

κ1 := gA

(
τ1δj−1

)
> gA

(
τ1δj

) ≥ g∗A
(
τ1δj

)
=: sup

θ∈Θ′1
(
τ1δj

) A(θ); (4.33)

κ2 := gB

(
τ2δk−1

)
> gB

(
τ2δk

) ≥ g∗B
(
τ2δk

)
=: sup

θ∈Θ′2
(
τ2δk

) B(θ), (4.34)

and, therefore, Lemma 3 is applicable with Θ1 = Θ′
1

(
τ1δj

)
and Θ2 = Θ′

2

(
τ2δk

)
.

Thus, applying the first assertion of Lemma 3, we obtain ∀j, k ≥ 0 and ∀z ≥ 1

P
{
Ψ(V )

j,k (z) ≥ 0
}
≤ 2c exp

{−z −R0
(
τ1δj , τ2δk

)}
.

Noting that the union of
{
A

(j)
1 ∩A

(k)
2 , j = 0, J, k = 0,K,

}
covers A, summing up the right hand

side in the last inequality over j, k we come to the first statement of the proposition.

Moment’s bound We get from (4.30) and (4.31) for any α ∈ A
(j)
1 ∩ A

(k)
2

Û (z,ε,q)(α) ≥ U
(ε)
~s

(
y,κ,Θ′

1

(
τ1δj

)
, Θ′

2

(
τ2δk

))
,

where y = (1 + ε)2
[
z + τεe~s

(
κ,Θ′

1

(
τ1δj

)
, Θ′

2

(
τ2δk

))
+ Rq

(
τ1δj , τ2δk

)]
, τε = 2(2 + ε)ε−1.
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It yields together with (4.32) ∀j, k ≥ 0

Φ(U)
j,k (z) :=



 sup

α∈A
(j)
1 ∩A

(k)
2

(
sup
θ∈Θα

{
Ψ (χθ)− Û (z,ε,q)(α)

})



+

≤
{

sup
θ∈Θ′1

(
τ1δj

)
∩Θ′2

(
τ2δk

))
[
Ψ (χθ)− U

(ε)
~s

(
y,κ, Θ′

1

(
τ1δj

)
,Θ′

2

(
τ2δk

))] }

+

.

Taking into account (4.33), (4.34) and applying the second assertion of Lemma 3, we have, analo-
gously to (4.24), ∀j, k ≥ 0 and ∀z ≥ 1

E
(
Φ(U)

j,k (z)
)q

≤ 2cΓ(q + 1)




U
(ε)
~s

(
y,κ, Θ′

1

(
τ1δj

)
,Θ′

2

(
τ2δk

))

z + τεe~s

(
κ,Θ′

1

(
τ1δj

)
,Θ′

2

(
τ2δk

))
+ Rq

(
τ1δj , τ2δk

)




q

exp
{−z −Rq

(
τ1δj , τ2δk

)}
.

Putting for brevity ej,k = e~s

(
κ, Θ′

1

(
τ1δj

)
, Θ′

2

(
τ2δk

))
we note that for any j, k ≥ 0 and z ≥ 1

U
(ε)
~s

(
y,κ, Θ′

1

(
τ1δj

)
, Θ′

2

(
τ2δk

)) ≤ 2
[
gA

(
τ1δj−1

) ∨ gB

(
τ2δk−1

)] [
4ε−2ej,k + y

]

Repeating the computation done after (4.24) we come to the second assertion of the proposition.

4.4. Proof of Lemma 1

10. We start the proof with the following simple fact. Let T̃ be an arbitrary subset of T. Then

sup
t∈T̃

ζ(t, ·) is B−measurable. (4.35)

Indeed, since T is totally bounded T̃ is totally bounded as well. Denote by T̂ the union of 2−l-nets,
l ≥ 0, in T̃. Let Ω0 =

{
ω ∈ Ω : ζ(·, ω) is continuous

}
and let Ω0 be the complementary to Ω0.

We have for any x ∈ R
{

ω ∈ Ω : sup
t∈T̃

ζ(t, ω) ≤ x

}
∩Ω0 =

{
ω ∈ Ω : sup

t∈T̂

ζ(t, ω) ≤ x

}
∩Ω0 ∈ B

since T̂ is countable dense subset of T̃. It remain to note that
{
ω ∈ Ω : sup

t∈T̃
ζ(t, ω) ≤ x

}
∩Ω0 ∈

B since P
(
Ω0

)
= 0 and the considered probability space is complete.

20. Set Z(n, k) =
{
z ∈ Z : g(z) ∈ [k/n, (k + 1)/n]

}
, n ∈ N∗, k ∈ Z, and let K(n) ⊆ Z, n ∈ N∗,

be defined from the relation if k ∈ K(n) ⇔ Z(n, k) 6= ∅. Put also T(k, n) = ∪z∈Z(k,n)Tz and define

ξk,n(ω) = sup
t∈T(k,n)

ζ(t, ω)− (k + 1)/n, ξn(ω) = sup
k∈K(n)

ξk,n(ω).

ηk,n(ω) = sup
z∈Z(k,n)

[
sup
t∈Tz

ζ(t, ω)− g(z)
]
, η(ω) = sup

z∈Z

[
sup
t∈Tz

ζ(t, ω)− g(z)
]
.
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Some remarks are in order. First, the definition of Z(k, n) implies that for any k ∈ K(n), n ∈ N∗

ξk,n(·) ≤ ηk,n(·) ≤ ξk,n(·) + n−1. (4.36)

Next, taking into account that Z = ∪k∈K(n)Z(k, n) for any n ∈ N∗ we have

η(·) = sup
k∈K(n)

ηk,n(·), ∀n ∈ N∗. (4.37)

We obtain from (4.36) and (4.37) that for any n ∈ N∗

0 ≤ η(·)− ξn(·) ≤ sup
k∈K(n)

[ηk,n(·)− ξk,n(·)] ≤ n−1,

and, therefore, η(·) = limn→∞ ξn(·). It remains to note that ξk,n(·) are B-measurable for any
k ∈ K(n), n ∈ N∗ in view of (4.35), that implies obviously that ξn(·) is B-measurable for any
n ∈ N∗. Thus, η(·) is B-measurable as a pointwise limit of B-measurable functions.

5. Proof of Theorem 1

Below c1, c2 . . . , denote the constants completely determined by d, p, µ and γ. We break the proof
on several steps.

10. Let Bq, 1 < q < ∞, denote the set of functions vanishing outside Kµ and those Lq-norm is
less or equal to 1. Later on the integration is always understood as the integration over Rd.

Consider the set of functions

Θh =
{

θ : Rd → R : θ(x) = h−d
∫

Kh (t− x) `(t)dt, ` ∈ B p
p−1

}
, h ∈ H.

Put also Θ = ∪h∈HΘh and for any θ ∈ Θ introduce the gaussian process

χθ =
∫

Rd
θ(x)b(dx). (5.1)

In view of Young inequality Folland (1999), Theorems 6.18 and 6.36, for any θ ∈ Θ

‖θ‖2 :=
(∫

Rd

∣∣θ(x)
∣∣2dx

) 1
2 ≤ h

d(2−p)
2p ‖K‖ 2p

p+2
≤ h

d(2−p)
2p ≤ (

h(min)) d(2−p)
2p < ∞, (5.2)

since 2 ≤ p < ∞. Here we have also used that ‖K‖q ≤ ‖K‖∞ ≤ 1 in view of assumption imposed
on the function K.

Thus, the stochastic integral in (5.1) is well-defined and χθ is zero-mean gaussian random function
on Θ such that

V (θ) = ‖θ‖2, ρ(θ1, θ2) = ‖θ1 − θ2‖2. (5.3)

We equip Θ with the semi-metric ρ and in the next paragraph we compute the entropy of several
subsets of Θ. This computation allows us, in particular, to assert that Dudley integral is finite on
Θ. It yields Lifshits (1995) that χ• is P-a.s uniformly continuous on (Θ, ρ), therefore Assumption
2 holds. Moreover, we show that Assumption 3 is fulfilled.
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We conclude that Proposition 3 are applicable to χθ, on Θ, with Θα = Θh, A = H, a =
√

2ρ,
A =

√
2V . It remains to note that in view of duality arguments for any h ∈ H

∥∥ξh

∥∥
p

= sup
`∈B p

p−1

∫
`(t)ξh(t)dt,

and, therefore, for any h ∈ H
‖ξh

∥∥
p

= sup
θ∈Θh

χθ. (5.4)

20. In order to apply Proposition 3 we need to compute several quantities. First, we have to
choose the function τ1 (since B, b ≡ 0, hence τ2 ≡ 0). Set τ1(h) = h−1 and note that for any u > 0

Θ′
1(u) :=

⋃

h: τ1(h)≤u

Θh =
⋃

h≥u−1

Θh,

We note that computations given in (5.2) yield

g∗A(u) := sup
θ∈Θ′1(u)

A(θ) ≤
√

2u
d(p−2)

2p =: gA(u), u ≥
(
h(max)

)−1
.

30. Let E(u)(δ), δ > 0, be the entropy of Θ′
1(u) computed with respect to semi-metric a =

√
2ρ,

where, remind ρ(·) = ‖ · ‖2. The following assertion is true: there exist c0 completely determined

by γ, d, p and µ such that for any ∀γ̄ ∈ (
d/2− d/p, γ

]
and for any u ≥

(
h(max)

)−1

E(u)(δ) ≤ c1u
d δ−d/γ̄ , ∀ δ > 0. (5.5)

where c1 = c034dd2.
The proof of (5.5) is obtained by routine computations and it is postponed to the step 80.

40. Choosing u =
(
h(min)

)−1
(that yields Θ′

1(u) = Θ) and γ̄ = γ we get for any δ > 0

EΘ,a(δ) ≤ c1

(
h(min)

)−d
(

1
δ

)d/γ

.

In view the condition γ > d/2, Dudley integral is finite on Θ and, therefore, χ• is P-a.s uniformly
continuous on (Θ, ρ). It complete the verification of Assumption 2.

The last inequality shows also that there exist τ > 0 such that for any s ∈ S, satisfying
lim supa→∞ aτs−1(a) < ∞, Assumption 3 is fulfilled.

50. Let us now choose the function s. Set δ(u) = ud/2−d/p and for any u ≥ 1 let m(u) ∈ N be
such that 2m(u) ≤ δ(u) < 2m(u)+1. Define

s(u, δ) =
(
3
/
4π2)

(
1 +

[
log2

(
2−m(u)δ

)]2
)−1

.

We remark that
s
(
u, 2k/2) = (3

/
4π2)

[
1 +

(
(k/2)−m(u)

)2
]−1
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and, therefore, s(u, ·) ∈ S for any u ≥ 1. Moreover, we note that if p = 2 then s does not depend
on u and it is given by

s(δ) =
(
3
/
4π2) (

1 +
[
log2 δ

]2)−1
.

Obviously the factor 3/4π2 can be replaced here by 6/π2.
Now, let us compute the quantity λ1 related to the function s. Remind that

λ1 := sup
t∈

[
1,
√

2
] sup

x>τ1

sup
δ>0

s(xt, δ)
s(x, δ)

,

where τ1 =
(
h(max)

)−1 ≥ 1. It is evident that

λ1 = sup
m≥0





1
∨

sup
δ>0




1 +
(

log2

(
2−mδ

))2

1 +
(

log2

(
2−m−1δ

))2








= 1
∨

sup
x>0

[
1 +

(
log2 (x)

)2

1 +
(
log2 (x/2)

)2

]

≤ 1 + sup
x>0

∣∣∣∣∣
2 log2 (x)− 1

1 +
(
log2 (x)− 1

)2

∣∣∣∣∣ = 1 + sup
y∈R

∣∣∣∣
2y + 1
1 + y2

∣∣∣∣ < 3.

60. Define

γ̄(δ) =

{
d/2− d/(2p), 0 < δ < δ(u);

γ, δ ≥ δ(u),

and note that (d/2− d/p) < γ(δ) ≤ γ for any δ > 0.
Putting c2 = c14(144)4 we get for any δ > 0 in view of (5.5)

E(u)
(
λ−1

1

[
gA(u)s(u, δ)

]
/48δ

)
≤ c2u

d
[
u

d(p−2)
2p s(u, δ)

]−d/γ̄(δ)
δd/γ̄(δ)

= c2u
2d
p
−
(

d(p−2)
2p

)(
d

γ̄(δ)
−2

) [
s(u, δ)

]−d/γ̄(δ)
δd/γ̄(δ)

= c2u
2d
p [δ(u)]2−

d
γ̄(δ)

[
s(u, δ)

]−4
δd/γ̄(δ). (5.6)

To get the last inequality we have taken into account that s(u, δ) < 1 for any u ≥ 1, δ > 0 and that
d/γ̄(δ) ≤ 4.

We obtain from (5.6) for any δ > 0, putting c3 = (4π2/3)4c2,

δ−2E(u)
(
λ−1

1

[
gA(u)s(u, δ)

]
/48δ

)
≤ c2u

2d
p

(
δ

δ(u)

)d/γ̄(δ)−2 [
s(u, δ)

]−4

≤ c2 u
2d
p

[(
δ
/

δ(u)
)2/(p−1)

1(0,δ(u))(δ) +
(
δ(u)

/
δ
)2−d/γ 1[δ(u),∞)(δ)

] [
s(u, δ)

]−4

≤ c2 u
2d
p

[(
2−m(u)δ

)2/(p−1)
1(1,δ(u))(δ) + 4

(
2m(u)/δ

)2−d/γ
1[δ(u),∞)(δ)

] [
s(u, δ)

]−4

= 5c3 u
2d
p 2−α|log2 (2−m(u)δ)|

(
1 +

[
log2

(
2−m(u)δ

)]2
)4

, (5.7)
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where α = min
{
2/(p− 1), 2− d/γ

}
. We obtain from (5.7)

E ′(u) := sup
δ>0

[
δ−2E(u)

(
λ−1

1

[
gA(u)s(u, δ)

]
/48δ

)]
≤ c4 u

2d
p , (5.8)

where c4 = 5c3 supx≥0

[
2−αx

(
1 + x2

)4
]
.

70. Remind that τ1(h) = h−1 and, in particular, τ1 =
[
h(min)

]−1. Choosing ε =
√

2 − 1 we get
from (5.8) putting c5 = c42d/p

Ê
(√

2−1
)
(h) := E ′

(√
2τ1(h)

)
≤ c5h

− 2d
p .

Choose also Rr(t) = R(t) = t
2d
p (independent of r) that yields

R̂
(√

2−1
)
(h) := R

(√
2τ1(h)

)
= 2d/ph

− 2d
p .

Choosing finally z = 0 and putting Û(h) = Û(z,ε,r)(h), ε =
√

2− 1, z = 1, we obtain that

Û(h) ≤
√

2gA

(
2τ1(h)

)√
32c5h

− 2d
p + 2d/ph

− 2d
p + 1 ≤ c6h

d(2−p)
2p

− d
p = c6h

− d
2 .

Let us compute now the quantities R(ε,0),R(ε,q) defined in (2.10) with ε =
√

2− 1.

Noting that τ1 =
(
h(max)

)−1
and 2J/2τ1 ≤ 2−1/2τ1 we get

R(ε,0) :=
J∑

j=0

exp

{
−

(
τ12−(j/2)

) 2d
p

}
≤ c8 exp

{
−2−3/2

(
h(max)

)−2d/p
}

;

R(ε,q) :=
J∑

j=0

[
gA

(
τ12−j/2)]q

exp

{
−

(
τ12−(j/2)

) 2d
p

}

≤ c9

(
h(max)

) qd(2−p)
2p exp

{
−2−3/2

(
h(max)

)−2d/p
}

.

The assertions of the theorem follow now from Proposition 3.

80. It remains to prove (5.5). The proof is based on the following inclusion: for any γ̄ ∈ (0, γ]

Θ′
1(u) ⊂ H∗ p

p−1

(
γ̄, 3d

√
duγ̄

)
, ∀u > 0, (5.9)

where H∗q(·, ·) ⊂ Hq(·, ·) consists of functions vanishing outside of K2µ.
Let E∗(·) be the entropy of H∗ p

p−1
(γ̄, L) , L > 0, measured in ‖ · ‖2. It is well-known Edmunds and

Triebel (1996), that for any p > 1 there exist c0 completely determined by γ, d, p and µ such that
for any (d/2− d/p) < γ̄ ≤ γ and for any L > 0

E∗(δ) ≤ c0

(
Lδ−1

)d/γ̄
, ∀ δ > 0.

Since γ̄ takes only two values d/2 − d/2p and γ, (5.5) follows immediately from (5.9). Thus, we
shall prove (5.9).
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Fix θ ∈ Θ′
1(u). By its definition there exists ` ∈ B p

p−1
and h ≥ u−1 such that θ = Kh ∗ `, where

” ∗ ” stands convolution operator on Rd. First, we note that all functions belonging to Θ vanish
outside the cube K2µ in view of assumption imposed on function K.

Next, for any m = (m1, . . . ,md) ∈ Nd put |m| = m1 + · · ·+ md, and set γ = l + α and γ̄ = l̄ + ᾱ,
where l, l̄ ∈ N and 0 < α, ᾱ ≤ 1.

Then, since K ∈ H∞(γ, 1) we have for any m ∈ Nd such that |m| ≤ l

sup
x∈Rd

∣∣∣∣∣
∂|m|Kh(x)

∂m1x1 · · · ∂mdxd

∣∣∣∣∣ ≤ h−|m| ≤ (
h(min))−γ

< ∞.

Above remarks allow us to assert that all partial derivatives θ(m) exist whenever |m| ≤ l and they
are given by

θ(m)(x) =
∫

(Kh)(m)(t− x)`(t)dt, ∀x ∈ Rd,

where for any function g the notation g(m) or (if it is more convenient) (g)(m) is used for its partial
derivative.

We obtain in view of Young inequality for any ∆ ∈ R and any m ∈ Nd satisfying |m| = l̄
∥∥∥θ(m)(·+ ∆)− θ(m)(·)

∥∥∥ p
p−1

≤
∥∥∥(Kh)(m)(·+ ∆)− (Kh)(m)(·)

∥∥∥
1

≤ h−l̄
∥∥∥K(m)(·+ [∆/h])−K(m)(·)

∥∥∥
1
.

Here we have used that ` ∈ B p
p−1

.

We remark that if h ≤ |∆| then for any u ∈ Rd either K(m)(u + [∆/h]) = 0 or K(m)(u) = 0 in
view of the assumption imposed on the support of K. Thus, if h ≤ |∆|

∥∥∥K(m)(·+ [∆/h])−K(m)(·)
∥∥∥
1
≤ ∥∥K(m)

∥∥
1
≤ ∥∥K(m)

∥∥
1

(
∆/h

)ᾱ ≤ (
∆/h

)ᾱ
,

since h ≤ |∆| and
∥∥K(m)

∥∥
1
≤ ∥∥K(m)

∥∥
∞ ≤ 1 in view of assumption imposed on the function K.

If h > |∆| then in view of the assumption imposed on the support of K we have
∥∥∥K(m)(·+ [∆/h])−K(m)(·)

∥∥∥
1

=
∫

[− 3
2
, 3
2 ]

d

∣∣∣K(m)(u + [∆/h])−K(m)(u)
∣∣∣ du

≤ 3d

∣∣∣∣∣
d∑

i=1

(∆/h)2
∣∣∣∣∣

ᾱ/2

≤ 3d
√

d
(|∆|/h

)ᾱ
.

Since h ≥ u−1 we conclude finally that ∀∆ ∈ R
∥∥∥θ(m)(·+ ∆)− θ(m)(·)

∥∥∥ p
p−1

≤ 3d
√

dh−γ̄ |∆|ᾱ ≤ 3d
√

duγ̄ |∆|ᾱ. (5.10)

It means that θ ∈ H p
p−1

(
γ̄, 3d

√
duγ̄

)
. As it was mentioned above all function belonging to Θ vanish

outside the cube K2µ that allows us to conclude that θ ∈ H∗ p
p−1

(
γ̄, 3d

√
duγ̄

)
and, therefore, (5.9) is

proved.
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Barron, A., Birgé, L. and Massart, P. (1999). Risk bounds for model selection via penalization.
Probab. Theory Related Fields 113, 301–413.

Bobkov, S.G. (1988). Upper functions and oscillating Gaussian processes. J. Soviet Math. 43, 6,
2745–2751.

Bousquet, O. (2002). A Bennett concentration inequality and its application to suprema of em-
pirical processes. C. R. Math. Acad. Sci. Paris 334, 495–500.

Cavalier, L. and Golubev, Yu. (2006). Risk hull method and regularization by projections of
ill-posed inverse problems. Ann. Statist. 34, 1653–1677.

Coifman, R.R. and Weiss, G. (1971). Analyse harmonique non-commutative sur certaines espaces
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