A numerical solution to Monge's problem with a Finsler distance as cost - Archive ouverte HAL
Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2018

A numerical solution to Monge's problem with a Finsler distance as cost

Résumé

Monge's problem with a Finsler cost is intimately related to an optimal flow problem. Discretization of this problem and its dual leads to a well-posed finite-dimensional saddle-point problem which can be solved numerically relatively easily by an augmented Lagrangian approach in the same spirit as the Benamou-Brenier method for the optimal transport problem with quadratic cost. Numerical results validate the method. We also emphasize that the algorithm only requires elementary operations and in particular never involves evaluation of the Finsler distance or of geodesics.
Fichier principal
Vignette du fichier
ALG2-Finsler.pdf (1.05 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01261094 , version 1 (23-01-2016)

Identifiants

  • HAL Id : hal-01261094 , version 1

Citer

Jean-David Benamou, Guillaume Carlier, Roméo Hatchi. A numerical solution to Monge's problem with a Finsler distance as cost. ESAIM: Mathematical Modelling and Numerical Analysis, 2018. ⟨hal-01261094⟩
341 Consultations
410 Téléchargements

Partager

More