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A numerical solution to Monge’s problem with

a Finsler distance as cost

Jean-David Benamou ∗, Guillaume Carlier †, Roméo Hatchi ‡

January 17, 2016

Abstract

Monge’s problem with a Finsler cost is intimately related to an op-

timal flow problem. Discretization of this problem and its dual leads

to a well-posed finite-dimensional saddle-point problem which can be

solved numerically relatively easily by an augmented Lagrangian ap-

proach in the same spirit as the Benamou-Brenier method for the opti-

mal transport problem with quadratic cost. Numerical results validate

the method. We also emphasize that the algorithm only requires ele-

mentary operations and in particular never involves evaluation of the

Finsler distance or of geodesics.
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1 Introduction

Given a bounded domain Ω of Rd, and two probability measures f+ and f−

on Ω, we are interested in solving Monge’s problem

inf
π∈Π(f−,f+)

∫

Ω×Ω

dL(x, y)dπ(x, y) (1.1)
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where Π(f−, f+) is the set of transport plans between f− and f+ i.e. the set
of probability measures having f− and f+ as marginals and dL is a Finsler
distance. More precisely, dL is given by

dL(x, y) := inf
{

∫ 1

0

L(γ(t), γ̇(t)) dt : γ ∈ W 1,1([0, 1],Ω), γ(0) = x, γ(1) = y
}

(1.2)
where the Lagrangian L: Ω × R

d → R+ is a continuous function of Finsler
type i.e. for every x ∈ Ω, v 7→ L(x, v) is a norm and there is a constant
C > 0 such that the following nondegeneracy condition holds:

|v|

C
≤ L(x, v) ≤ C|v|, ∀(x, v) ∈ Ω× R

d. (1.3)

Of course, one difficulty is the evaluation of the cost, and we shall see how to
avoid computing it. This will be done by considering suitable dual, minimal
flow and saddle-point formulations for which one can easily use an augmented
Lagrangian method. The use of augmented Lagrangian methods in optimal
transport was pioneered in the seminal work of Benamou and Brenier [4] on
the dynamic formulation of the quadratic optimal transport case. For a dis-
tance cost (Monge case), in fact there is no need to introduce an additional
time-variable and the analogue of the Benamou-Brenier dynamic problem
is the minimal flow problem introduced by Beckmann [3]. We refer to the
recent work [5] of the first two authors for applications of these augmented
Lagrangian methods to Mean-Field-Games and optimal transport and to the
work of the third author [13] for applications to anisotropic congested op-
timal transport. To the best of our knowledge, the relevance of augmented
Lagrangian methods for a general Finsler metric has remained unnoticed in
the literature. For other methods to solve optimal problems with the eu-
clidean distance as transport cost, we refer for instance to [2] where a certain
regularization is considered. Our goal is to show that Monge’s problem with
a Finsler metric is in fact quite easy to solve directly numerically by using an
augmented Lagrangian approach. Let us finally mention the work of Rubin-
stein and Wolansky [15] which leads to problems similar to (1.1)-(1.2) having
their roots in the study of semiclassical limits for some classes of dispersive
wave equations.

The paper is organized as follows. In section 2, we recall several reformu-
lations of the Monge problem with Finsler cost (1.1): the Kantorovich dual,
the minimal flow reformulation and finally a (formal) saddle-point problem
for finding at the same time the Kantorovich potential and the optimal flow
field. Section 3 describes the discretization of the saddle-point problem, dis-
cusses the convergence and details the steps of the augmented algorithm
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ALG2 of Glowinski and Fortin in this context. Section 4 gives numerical
results.

2 Reformulations

2.1 Dual and minimal flow formulations

The standard Kantorovich duality formula (see [17]) says that the infimum
in Monge’s problem (1.1) coincides with the value of the dual:

sup
{

〈u, f〉 :=

∫

Ω

u(x)d(f+ − f−)(x) : u is 1-Lipschitz for dL

}

. (2.1)

Thanks to (1.3), it is easy to see that if u is 1-Lipschitz for dL it is actually
Lipschitz hence differentiable a.e., moreover the constraint u(x) − u(y) ≤
dL(x, y) can be expessed in differential form as follows. Defining the dual
norm L∗(x, .) of L(x, .):

L∗(x, p) := sup{p · v : L(x, v) ≤ 1},

one can express the fact that u is 1-Lipschitz for dL by the following pointwise
constraint on ∇u

L∗(x,∇u(x)) ≤ 1 for a.e. x ∈ Ω (2.2)

i.e.
σ · ∇u(x) ≤ L(x, σ), ∀σ ∈ R

d.

Thus (2.1) can be rewritten in sup-inf form as

sup
u∈W 1,∞

inf
σ∈L1(Ω,Rd)

〈u, f〉+

∫

Ω

L(x, σ(x))dx−

∫

Ω

∇u(x) · σ(x)dx. (2.3)

Switching the infimum and the supremum above, we obtain another dual
formulation of (2.1):

inf
σ∈L1(Ω,Rd)

∫

Ω

L(x, σ(x))dx+ sup
u∈W 1,∞

〈u, f〉 −

∫

Ω

∇u(x) · σ(x)dx

observing that the supremum with respect to u is 0 if −div(σ) = f = f+−f−

and σ · ν = 0 on ∂Ω in the weak sense i.e.
∫

Ω

∇u(x) · σ(x)dx = 〈u, f〉, ∀u ∈ C1(Ω)
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and +∞ otherwise, we obtain the following minimal flow problem dual for-
mulation of (2.1):

inf
σ∈L1(Ω,Rd)

{

∫

Ω

L(x, σ(x))dx : −div(σ) = f
}

. (2.4)

Minimal flow formulations for transport problems were first introduced in the
1950’s by Beckmann in an economic context [3], the connection with Monge’s
problem was realized much later (see in particular [9] and [10]). It is obvious
that (2.1) possesses solutions. Standard convex duality also implies that
there is no duality gap and that

sup(2.1) = inf(1.1) = inf(2.4). (2.5)

It is however not clear in general that (2.4) possesses L1 solutions. In the
spatially homogeneous case where L(x, v) is the euclidean norm (or more
generally some smooth and uniformly convex norm), |σ| is called the trans-
port density and there are important and involved L1 regularity results for
the transport density under suitable assumptions on f± due to Feldman and
McCann [10], De Pascale, Evans and Pratelli [6], De Pascale and Pratelli [7]
and Santambrogio [16]. We are not aware of extensions to the Finsler case
yet. Since the cost in (2.4) is convex and homogeneous of degree one, (2.4)
can be relaxed to vector-valued measures which amounts to replace (2.4) by:

inf
σ∈M(Ω,Rd)

{

∫

Ω

L
(

x,
dσ

d|σ|
(x)

)

d|σ|(x) : −div(σ) = f
}

. (2.6)

where |σ| is the total variation measure of the vector-valued measure σ and
dσ

d|σ|
is the density of σ with respect to |σ|. It is then obvious by (1.3) and

Banach-Alaoglu Theorem that the relaxed problem (2.6) admits solutions.
To sum up, we have the following duality and attainment relations

MK(L, f) := min(1.1) = max(2.1) = inf(2.4) = min(2.6) (2.7)

where we have denoted MK(L, f) the common value of (1.1), (2.1) and (2.4).

2.2 Relations between the three problems

We now discuss in a slightly formal way the relationships between the three
problems (1.1), (2.1) and (2.4). For further use, let us denote by B(x) and
B∗(x) respectively the unit ball for L(x, .) and L∗(x, .):

B(x) := {σ ∈ R
d, L(x, σ) ≤ 1}, B∗(x) := {q ∈ R

d, : L∗(x, q) ≤ 1}
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and recall

L(x, σ)L∗(x, q) ≥ σ · q, L(x, σ) = sup
q∈B∗(x)

q · σ, L∗(x, q) = sup
σ∈B(x)

q · σ. (2.8)

Recalling that if C is a closed convex subset of Rd and z ∈ C the normal
cone of C at z, NC(z) is by definition:

NC(z) := {ξ ∈ R
d : ξ · z ≥ ξ · y, ∀y ∈ C},

it is easy to see that, if non zero vectors σ and q satisfy L(x, σ)L∗(x, q) = q ·σ
this means that

q ∈ NB(x)

( σ

L(x, σ)

)

(2.9)

or equivalently

σ ∈ NB∗(x)

( q

L∗(x, q)

)

. (2.10)

In the case where B(x) or B∗(x) is smooth the normal cones at a point of
∂B(x) or ∂B∗(x) are simply the half line generated by the normal vectors
(Gauss maps) and thus the previous relations give an unambiguous informa-
tion on the relation between the direction of q and σ.

Any optimal plan π for (1.1) is related to any optimal potential u for
(2.1) by the complementary slackness condition:

u(y)− u(x) = dL(x, y), ∀(x, y) ∈ spt(π). (2.11)

Let then (x, y) ∈ spt(π) and let t ∈ [0, 1] 7→ γx,y(t) be a geodesic between x
and y, it is easy to deduce from (2.11) and the fact that u is 1-dL Lipschitz
that one also has for every (s, t) such that 0 ≤ s ≤ t ≤ 1:

u(γx,y(t))− u(γx,y(s)) = dL(γx,y(t), γx,y(s)) = (t− s)dL(x, y). (2.12)

In other words, u grows at the maximal rate allowed by the Lipschitz con-
straint on the geodesic γx,y. If u was smooth we could further write:

u(y)− u(x) =

∫ 1

0

∇u(γx,y(s)) · γ̇x,y(s)ds

and then
∫ 1

0

∇u(γx,y(s)) · γ̇x,y(s)ds = dL(x, y) =

∫ 1

0

L(γx,y(s), γ̇x,y(s))ds.
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but since L∗(γx,y(s),∇u(γx,y(s))) ≤ 1, we pointwise have∇u(γx,y(s))·γ̇x,y(s) ≤
L(γx,y(s), γ̇x,y(s)) so that

∇u(γx,y(s)) · γ̇x,y(s) = L(γx,y(s), γ̇x,y(s)), ∀s ∈ [0, 1], (2.13)

which also gives

L∗(γx,y(s),∇u(γx,y(s))) = 1, ∀s ∈ [0, 1]. (2.14)

This expresses in a local way the fact that the Lipschitz constraint on u is
binding on geodesics (this is again formal). Note that (2.14) gives a precise
relation between ∇u(x) and the direction of geodesics passing through x:
they are tangent to a vector in the normal cone NB∗(x)(∇u(x)).

Now if σ solves (2.4) and u is a solution of (2.1), then complementary
slackness takes the form

L(x, σ(x)) = σ(x) · ∇u(x) a.e. (2.15)

hence
σ(x) 6= 0 ⇒ L∗(x,∇u(x)) = 1, (2.16)

which again expresses that the Lipschitz constraint is binding on the support
of the transport density. The direction of optimal flows and gradients of
Kantorovich potentials are therefore related by the duality relations

σ(x) 6= 0 ⇒ σ(x) ∈ NB∗(x)(∇u(x)), ∇u(x) ∈ NB(x)

( σ(x)

L(x, σ(x))

)

. (2.17)

It remains to investigate the relations between optimal plans and optimal
flow fields. The following (heuristic) construction is well-known (see for in-
stance [1]) in the euclidean setting: let π be an optimal plan i.e. a solution
for (1.1). For every (x, y) ∈ spt(π) let t ∈ [0, 1] 7→ γx,y(t) be a geodesic
between x and y and define the vector-valued measure σπ by

∫

Ω

Fdσπ :=

∫

Ω×Ω

(

∫ 1

0

F (γx,y(s)) · γ̇x,y(s)ds
)

dπ(x, y) (2.18)

for every F ∈ C(Ω,Rd). Let φ ∈ C1(Ω), using the fact that π ∈ Π(f−, f+)
then gives

∫

Ω

∇φdσπ =

∫

Ω×Ω

(φ(y)− φ(x))dπ(x, y) = 〈φ, f〉
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i.e. −div(σπ) = f so that σπ is admissible for the minimal flow problem (2.4).
To see that σπ is actually optimal, we consider a Kantorovich potential i.e.
a solution u of (2.1). Thanks to (2.7), it is enough to show that

∫

Ω

L(x, σπ(x))dx ≤ 〈u, f〉.

On the one hand, observing that:

∫

Ω

L(x, σπ(x))dx = sup
{

∫

Ω

F (x) · σπ(x)dx : L∗(x, F (x)) ≤ 1
}

and that if L∗(x, F (x)) ≤ 1 then

∫

Ω

F (x) · σπ(x)dx =

∫

Ω×Ω

(

∫ 1

0

F (γx,y(s)) · γ̇x,y(s)ds
)

dπ(x, y)

≤

∫

Ω×Ω

(

∫ 1

0

L(γx,y(s), γ̇x,y(s))ds
)

dπ(x, y)

we get

∫

Ω

L(x, σπ(x))dx ≤

∫

Ω×Ω

(

∫ 1

0

L(γx,y(s), γ̇x,y(s))ds
)

dπ(x, y).

On the other hand, thanks to the complementary slackness condition (2.13)
and −div(σπ) = f , we have

〈u, f〉 =

∫

Ω

∇u · σπ =

∫

Ω×Ω

(

∫ 1

0

∇u(γx,y(s)) · γ̇x,y(s)ds
)

dπ(x, y)

=

∫

Ω×Ω

(

∫ 1

0

L(γx,y(s)), γ̇x,y(s))ds
)

dπ(x, y).

This proves the optimality of σπ.

2.3 Lagrangian and saddle-point

Rewrite (2.1) as

inf
u,q

{

− 〈u, f〉+G(q) : q = ∇u a.e.
}

where

G(q) :=

∫

Ω

G(x, q(x))dx
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and

G(x, q) :=

{

0, if L∗(x, q) ≤ 1

+∞, otherwise

and then rewrite (2.1)-(2.4) as the saddle point problem

inf
u,q

sup
σ

L(u, q, σ)

where the Lagrangian L is defined by

L(u, q, σ) := −〈u, f〉+

∫

Ω

G(x, q(x))dx

+

∫

Ω

σ(x) · (∇u(x)− q(x))dx.

For r > 0, let us also introduce the augmented Lagrangian

Lr(u, q, σ) := −〈u, f〉+

∫

Ω

G(x, q(x))dx

+

∫

Ω

σ(x) · (∇u(x)− q(x))dx+
r

2

∫

Ω

|∇u− q|2.

.

Recall that L and Lr have the same saddle-points ([11], [12]). Note that
in both L and Lr we multiply the L∞ vector field ∇u by σ, which a priori
only makes sense only if σ is L1. Existence of saddle-points is therefore not
guaranteed unless there is an L1 solution to (2.4). However at the level of
the discretized problems (see next section), there is no such regularity issue,
there exists saddle-points for the discretized Lagrangian and finding such
saddle-points is equivalent to solving (2.1) and (2.4) simultaneously.

3 Discretization and algorithm

3.1 Discretization

We now consider suitable approximations of our problems by finite-dimensional
(convex) ones using finite elements. In these finite dimensional-approximations
existence of saddle-points is not an issue anymore. More precisely, consider a
family of regular triangulations Th of the domain (which we now assume to be
two-dimensional) indexed by the typical meshsize h (i.e. the diameter of each
T ∈ Th is less than Ch for some positive constant C), let Eh ⊂ W 1,∞(Ω) be
the corresponding finite-dimensional space of Lagrange P1 (piecewise linear)
finite elements of order 1 (a similar analysis can be done for higher order
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finite-elements) whose generic elements are denoted uh. Slightly abusing
notations, we shall consider uh both as a finite-dimensional vector and a Lip-
schitz, piecewise linear function defined on the whole domain, the gradient
of uh has piecewise constant components, it is still denoted ∇uh. We further
assume that the mesh is regular in the sense that the Lagrange interpolate
map Ih : W 1,∞(Ω) → Eh satisfies

lim
h→0

‖∇v −∇(Ih(v))‖L∞ → 0, ∀v ∈ C1(Ω). (3.1)

We also approximate the linear form f by fh ∈ (Eh)
∗ ≃ Eh (again with

〈fh, 1〉 = 0) in such a way that fh weakly converges to f in the sense of
measures as h → 0.

We then consider the approximation of (2.1):

sup
uh∈Kh

〈fh, uh〉 (3.2)

where Kh is the convex subset of Eh consisting of all uh’s in Eh such that for
every T ∈ Th one has

L∗(xT ,∇uh|T ) ≤ 1, (3.3)

where xT is a given point in T (for instance its center of mass or one of its
vertices). To prove that this is a consistent approximation of Kantorovich
problem (2.1), it is useful to observe first that smooth functions are dense in
the admissible set for (2.1):

Lemma 3.1. Let u be a 1-Lipschitz for dL function, then there exists a
sequence un of C∞(Rd), 1-Lipchitz for dL functions converging uniformly on
Ω to u. In particular this implies that

max(2.1) = sup
{

〈u, f〉 : u is 1-Lipschitz for dL and C∞(Rd)
}

. (3.4)

Proof. First extend u on the whole of Rd by setting

u(x) = inf
y∈Ω

{u(y) + dL(x, y)}.

Consider a standard mollifying kernel ρε(x) := ε−dρ(ε−1x) with ρ ∈ C∞
c (Rd),

ρ ≥ 0, ρ(x) = 0 for |x| ≥ 1 and
∫

Rd ρ = 1. Then for ε > 0 and δ > 0,
define then the smooth function uε,δ := 1

1+δ
ρε ⋆ u. We then have for every
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x ∈ Ω, using the convexity of L∗(x, .), Jensen’s inequality and the fact that
L∗(y,∇u(y)) ≤ 1 a.e.

L∗(x,∇uε,δ(x)) ≤
1

1 + δ

∫

Rd

ρε(x− y)L∗(x,∇u(y))dy

=
1

1 + δ

∫

Rd

ρε(x− y)L∗(y,∇u(y))dy

+
1

1 + δ

∫

Rd

ρε(x− y)(L∗(x,∇u(y))− L∗(y,∇u(y)))dy

≤
1 + ω(ε)

1 + δ

where

ω(ε) := sup |{L∗(x, q)− L∗(y, q)|, x ∈ Ω, |x− y| ≤ ε, |q| ≤ ‖∇u‖L∞}.

Thus uε,δ is 1-dL Lipschitz as soon as ω(ε) ≤ δ, this clearly proves the desired
result since L∗ is continuous.

One easily deduces the following convergence result:

Proposition 3.2. Let uh be a solution of (3.2) normalized so as to have zero
mean, then for some vanishing sequence of meshsizes hn → 0 as n → ∞,
uhn

converges uniformly to some Kantorovich potential u i.e. some solution
of (2.1).

Proof. Thanks to (1.3), uh is uniformly Lipschitz, since it has nonzero mean,
thanks to Ascoli’s theorem, for some vanishing sequence of meshsizes, it
converges in C(Ω) to some Lipschitz function u. Thanks to Banach-Alaoglu’s
Theorem, we may also assume that ∇uh converges weakly ∗ in L∞ to ∇u.
To check that u is 1-dL Lipschitz, it is enough to show that for every σ ∈
C(Ω,R2) one has

∫

Ω

σ · ∇u ≤

∫

Ω

L(x, σ(x))dx. (3.5)

Since uh ∈ Kh we have for every T ∈ Th, ∇uh|T · σ(xT ) ≤ L(xT , σ(xT )),
multiplying by the measure of T , summing over all triangles of Th and letting
h → 0 gives (3.5). It remains to prove that u solves (2.1), which thanks to
Lemma 3.1 amounts to show that 〈f, u〉 ≥ 〈f, v〉 for every smooth and 1-
dL-Lipschitz function v. Let then v be such a smooth and 1-dL-Lipschitz
function, for every T ∈ Th, we have

L∗(xT ,∇Ih(v)(xT )) = L∗(xT ,∇v(xT )) + L∗(xT ,∇Ih(v)(xT ))− L∗(xT ,∇v(xT ))

≤ 1 + ωh
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where

ωh := sup
T∈Th

|L∗(xT ,∇Ih(v)(xT ))− L∗(xT ,∇v(xT ))| ≤ C‖∇v −∇(Ih(v))‖L∞

tends to 0 as h → 0 thanks to (3.1). Then defining vh := (1+ωh)
−1Ih(v), we

have vh ∈ Kh and vh converges uniformly to v as h → 0, passing to the limit
in 〈fh, uh〉 ≥ 〈fh, vh〉, we can conclude that u is a Kantorovich potential.

3.2 Augmented Lagrangian algorithm

From now on, we drop the dependence in h in the approximation parameter
and slightly abusing notations, we use the same notations as in the continuous
framework, eventhough in what follows we actually consider the discretiza-
tion of the augmented Lagrangian Lr. Existence of a saddle-point is not an
issue at the level of the finite-dimensional approximation and convergence
of the augmented Lagrangian algorithm recalled below is well-known (see
Eckstein and Bertsekas [8]). The augmented Lagrangian algorithm ALG2
splitting scheme, consists, starting from (u0, q0, σ0) ∈ R

n ×R
m ×R

m to gen-
erate inductively a sequence (uk, qk, σk) as follows (abusing notations we still
denote by ∇ the discretization of the gradient):

• Step 1: minimization with respect to u:

uk+1 := argminu∈Rn

{

− 〈u, f〉+ σk · ∇u+
r

2
|∇u− qk|2

}

, (3.6)

• Step 2: minimization with respect to q:

qk+1 := argminq∈Rm

{

G(q)− σk · q +
r

2
|∇uk+1 − q|2

}

, (3.7)

• Step 3: update the multiplier by the gradient ascent formula

σk+1 = σk + r(∇uk+1 − qk+1). (3.8)

Step 1 consists in solving a Laplace equation :

−r(∆uk+1 − div(qk)) = f + div(σk) in Ω, (3.9)

together with the Neumann boundary condition

r
∂uk+1

∂ν
= rqk · ν − σk · ν on ∂Ω. (3.10)
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Step 2 is a pointwise projection problem

qk+1(x) = pB∗(x)

(

∇uk+1 +
σk

r

)

,

where pB∗(x) is the projection onto B∗(x) := {q ∈ R
d : L∗(x, q) ≤ 1} the

unit ball for L∗(x, .).

3.3 Examples

We now give some details on how to perform the projection step 2 in practice.
For the sake of simplicity we drop the dependence of L and L∗ in x.

The Riemannian case

In the Riemannian case L(v) = (Av ·v)
1

2 for some symmetric positive definite
matrix A. Up to diagonalizing A, there is no loss of generality in assuming
that L(v) = (

∑d
i=1 λiv

2
i )

1

2 with λi > 0 the eigenvalues of A. The dual norm

L∗ is then given by L∗(q) = (
∑d

i=1 λ
−1
i q2i )

1

2 . The projection pB∗ onto B∗ :=
{q ∈ R

d : L∗(q) ≤ 1} is almost explicit:

p∗B(q) =

{

q, if q ∈ B∗,
(

λ1q1
λ1+α

, · · · λdqd
λd+α

)

with α the positive root of (3.11) otherwise

where the nonlinear equation to be solved by α reads

1 =
d

∑

i=1

λiq
2
i

(λi + α)2
. (3.11)

This single equation is monotone in α and can be efficiently solved by New-
ton’s method.

The case where L(x, .) is defined by finitely directions

The second case we have in mind is the polyhedral case where L is defined
by finitely many directions. More precisely (and again this is for a fixed x),
we are given a collection of unit vectors v1, · · · , vk which we complete by
vk+1 = −v1, · · · , v2k = −vk and such that 0 belongs to the interior of the
(symmetric) convex polytope co({vj, j = 1, · · · , 2k}). We are also given
positive reals (ξj)j=1,··· ,2k with ξj+k = ξj for j ∈ {1, · · · , k} and then consider
the crystalline norm

L(v) := inf
{

2k
∑

j=1

ξjαj : αj ≥ 0,

2k
∑

j=1

αjvj = v
}

.
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It is immediate to see that L is the gauge of the symmetric convex polytope
B := co({ξ−1

j vj, j = 1, · · · , 2k}) which is then its unit ball. The dual norm
L∗ is then explicitly given by

L∗(q) := max
j=1,··· ,k

ξ−1
j |q · vj |, (3.12)

its dual unit ball B∗ is then defined by the inequalities |q · vj | ≤ ξj for j =
1, · · · , k. In dimension two, the projection onto B∗ can be easily performed
as follows. First, compute the vertices and sides of B∗ (note that the latter
have one of the vectors vj as normal, so these computations can be done in
an automatic way) so as to be able to represent B∗ = co({Si, i = 1, · · · , 2l})
where S1, · · · , Sl are the successive vertices of B∗ and denote by νi the unit
exterior normal to the side [Si, Si+1]. Now if q is a generic vector of the
plane belonging to the complement of B∗ (otherwise its projection is q),
then q belongs either to one half strip [Si, Si+1] + R+νi and in this case its
projection on B∗ coincides with its projection on the line Si+ν⊥

i or it belongs
to one of the sectors Si+R+νi−1+R+νi and in this case the projection of q is
the vertex Si. We illustrate these considerations in Figure 1, by the following
example with k = 4,

vj =

(

cos

(

(j − 1)π

k

)

, sin

(

(j − 1)π

k

))

, ξ1 = 2.5, ξ2 = 2, ξ3 = 1.5, ξ4 = 3.

In fact, the vector v4 is useless since ξ4 is very large with respect to the
other ones. So the ball B∗ is only defined by the inequalities |q · vj| ≤ ξj
for j = 1, . . . , 3. The point q1 is in the half strip [S6, S1] + R+v1 so that
its projection is on the segment [S6, S1]. The point q2 belongs to the sector
S6 + R+v6 + R+v1 so that its projection is S6.

4 Results

We use the software FreeFem++ (see [14]) to implement the ALG2 scheme
described above. The Lagrangian finite elements and notations used in Sub-
section (3.2) are taken here. We use P2 FE for uh and P1 for (qh, σh) (ap-
proximation is better and convergence is faster than with P0 and P1). As
emphasized in the previous subsection, the first step and the third one are
always the same. Only the projection step 2 changes according to the geom-
etry of the Finsler metric. For our numerical simulations Ω is a 2D square
(x = (x1, x2) ∈ [0, 1]2) and we test with different f :

f−
1 := e−40∗((x1−0.75)2+(x2−0.25)2 and f+

1 := e−40∗((x1−0.25)2+(x2−0.65)2),

f−
2 := e−40∗((x1−0.5)2+(x2−0.15)2) and f+

2 := e−40∗((x1−0.5)2+(x2−0.75)2).

13



0•
S1

S2S3

S4

S5 S6 = q2

q1×q1

q2×

v1

v2

v3

Figure 1: Projecting on the polyhedron B∗.

In the third case, we take f−
3 a constant density and f+

3 is the sum of three
concentrated Gaussians

f+
3 (x1, x2) = e−400∗((x1−0.25)2+(x2−0.75)2) + e−400∗((x1−0.35)2+(x2−0.15)2)

+ e−400∗((x1−0.85)2+(x2−0.7)2).

In the following two subsections, in each figure, there are two images.
The top one represents σ and the bottom one corresponds to the level lines
of u.

4.1 Riemannian case

Here L(x, v) = (λ1(x)v
2
1 + λ2(x)v

2
2)

1

2 , we take one λi constant and the other
one non constant, that is equal to the inverse of

g(x1, x2) = 1.5− exp(−100 ∗ ((x1 − 0.5)2 + (x2 − 0.5)2)).

14



Figure 2: Test case 1: Riemannian metric with λ1 = 0.1, λ2 = 1/g and
f = f3. Top: vector fied σ, bottom: level sets of the Kantorovich potential
u.
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Figure 3: Test case 2: Riemannian metric with λ1 = 1/g, λ2 = 0.1 and
f = f3. Top: vector fied σ, bottom: level sets of the Kantorovich potential
u.
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4.2 Polyhedral case

We tested the following polyhedral examples. In Figure 6 we take k = 2 and
v1 perpendicular to v2, the dual unit ball B

∗ then is a rectangle. In all other
examples, k = 15 and the angle between two consecutive directions is π/k.
The form of B∗ then depends on the chosen ξj ’s. If the ξj’s are (almost)
equal, B∗ is a polyhedron with thirty edges. It is in particular the case for
Figure 5, Figure 8, Figure 9 and Figure 10. In the last examples, we have

ξj = cos
(

2(j−1)π
k

)

+ 1.5 and the ball B∗ then only has 12 edges.

Figure 4: Test case 3: polyhedral metric, k = 15, vj =
(

cos
(

(j−1)π
k

)

, sin
(

(j−1)π
k

))

and ξj = cos
(

2(j−1)π
k

)

+ 1.5 for j = 1, . . . , k

with f = f1. Top: vector fied σ, bottom: level sets of the Kantorovich
potential u.
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Figure 5: Test case 4: polyhedral metric, k = 15, vj =
(

cos
(

(j−1)π
k

)

, sin
(

(j−1)π
k

))

and ξj = 1.5 for j = 1, . . . , k with f = f1. Top:

vector fied σ, bottom: level sets of the Kantorovich potential u.
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Figure 6: Test case 5: polyhedral metric, k = 2, vj =
(

cos
(

(j−1)π
k

+ π
3

)

, sin
(

(j−1)π
k

+ π
3

))

and ξj = cos
(

2(j−1)π
k

)

+ 1.5 for j =

1, . . . , k with f = f2. Top: vector fied σ, bottom: level sets of the Kan-
torovich potential u.
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Figure 7: Test case 6: polyhedral metric, k = 15, vj =
(

cos
(

(j−1)π
k

)

, sin
(

(j−1)π
k

))

and ξj = cos
(

2(j−1)π
k

)

+ 1.5 for j = 1, . . . , k

with f = f3. Top: vector fied σ, bottom: level sets of the Kantorovich
potential u.
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Figure 8: Test case 7: polyhedral metric, k = 15, vj =
(

cos
(

(j−1)π
k

)

, sin
(

(j−1)π
k

))

and ξj = 1
2
cos

(

2(j−1)π
k

)

+ 1.5 for j = 1, . . . , k

with f = f3. Top: vector fied σ, bottom: level sets of the Kantorovich
potential u.
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Figure 9: Test case 8: polyhedral metric, k = 15, vj =
(

cos
(

(j−1)π
k

)

, sin
(

(j−1)π
k

))

and ξj = 1
10
cos

(

2(j−1)π
k

)

+ 1.5 for j = 1, . . . , k

with f = f3. Top: vector fied σ, bottom: level sets of the Kantorovich
potential u.

22



Figure 10: Test case 9: polyhedral metric, k = 15, vj =
(

cos
(

(j−1)π
k

)

, sin
(

(j−1)π
k

))

and ξj = 1 for j = 1, . . . , k with f = f3. Top:

vector fied σ, bottom: level sets of the Kantorovich potential u.
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4.3 Error Criteria

To analyze the convergence of our simulations, we have considered three
criteria corresponding to the optimality conditions:

−div(σ) = f, in Ω σ · ν = 0 on ∂Ω, (4.1)

as well as duality relation

L(x, σ) = σ · ∇u (4.2)

which can be equivalently rewritten in a dual way as

σ(x) 6= 0 ⇒ L∗(x,∇u(x)) = 1. (4.3)

We use a triangulation of the unit square with n = 1/h element on each
side and the following convergence criteria:

1. DIV.Error =
(

∫

Ωh
(divσk

h + f)2
)1/2

is the L2 error on the divergence

constraint.

2. BND.Error =
(

∫

∂Ωh
(σk

h · ν)
2
)1/2

is the L2(∂Ωh) error on the Neumann

boundary condition.

3. DUAL.Error =
(

∫

Ωh
|L(·, σk

h(·))−∇uk
h · σ

k
h|
)

for the Riemannian case.

DUAL.Error =
(

∫

Ωh
|L∗(·,∇uk

h(·))− 1|χ{|σk
h
|>ε}

)

for the polyhedral case

with ε = 10−2.

The first two criteria represent the optimality conditions for the minimization
of the Lagrangian with respect to u and the third one is for the maximization
with respect to σ. We do not take exactly the same criteria for both examples.
Indeed, in the Riemannian case, L(·, σ) is simple to compute whereas in the
polyhedral case, it is tedious in general. On the other hand, L∗(·,∇u(·)) has
an explicit form given by (3.12). We show below the results of our numerical
simulations after 400 iterations for each case.
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Test case DIV.Error BND.Error DUAL.Error Time execution (seconds)
1 3.0940e-05 4.9502e-04 1.6274e-06 287
2 3.2576e-05 4.0942e-04 2.1978e-06 285
3 9.3806e-05 7.9803e-04 8.1512e-04 435
4 6.1646e-06 2.5572e-04 2.7813e-03 658
5 1.9829e-05 2.2784e-03 4.8522e-04 310
6 1.1407e-04 8.5331e-04 1.8588e-03 446
7 1.0402e-04 8.5816e-04 1.2846e-03 660
8 9.9358e-05 4.9236e-04 1.2181e-03 654
9 8.3469e-05 5.0099e-04 1.1265e-03 656

Table 1: Convergence of the finite element discretization for all test cases.
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